(±1)-Invariant sequences and truncated Fibonacci sequences

被引:5
|
作者
Choi, GS
Hwang, SG [1 ]
Kim, IP
Shader, BL
机构
[1] Kyungpook Natl Univ, Dept Math Educ, Taegu 702701, South Korea
[2] Univ Wyoming, Dept Math, Laramie, WY 82071 USA
关键词
invariant sequence; truncated Fibonacci sequence; truncated Lucas sequence;
D O I
10.1016/j.laa.2004.08.018
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let P = [((i)(j))], (i, j = 0, 1, 2, . . .) and D=diag((- 1)(0), (-1)(1), (-1)(2), . . .). As a linear transformation of the infinite dimensional real vector space R-infinity = {(x(0), x(1), x(2), . . .)(T)\x(i) is an element of R for all i}, PD has only two eigenvalues 1, -1. In this paper, we find some matrices associated with P whose columns form bases for the eigenspaces for PD. We also introduce truncated Fibonacci sequences and truncated Lucas sequences and show that these sequences span the eigenspaces of PD. (C) 2004 Published by Elsevier Inc.
引用
收藏
页码:303 / 312
页数:10
相关论文
共 50 条
  • [41] CONVERGENT GENERALIZED FIBONACCI SEQUENCES
    GERDES, W
    FIBONACCI QUARTERLY, 1977, 15 (02): : 156 - 160
  • [42] An application of Fibonacci sequences in groups
    Dikici, R
    Özkan, E
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 323 - 331
  • [43] On Fibonacci-Like Sequences
    Vinh, Le Anh
    JOURNAL OF INTEGER SEQUENCES, 2007, 10 (10)
  • [44] ACCELERATIONS OF GENERALIZED FIBONACCI SEQUENCES
    Abrate, Marco
    Barbero, Stefano
    Cerruti, Umberto
    Murru, Nadir
    FIBONACCI QUARTERLY, 2011, 49 (03): : 255 - 266
  • [45] Generalized Fibonacci sequences in groupoids
    Kim, Hee Sik
    Neggers, J.
    So, Keum Sook
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [46] TOEPLITZ TRANSFORMS OF FIBONACCI SEQUENCES
    Connell, L.
    Levine, M.
    Mathes, B.
    Sukiennik, J.
    BULLETIN OF THE IRANIAN MATHEMATICAL SOCIETY, 2015, 41 (07) : 123 - 132
  • [47] Generalized Fibonacci sequences in groupoids
    Hee Sik Kim
    J Neggers
    Keum Sook So
    Advances in Difference Equations, 2013
  • [48] Psychoacoustic Properties of Fibonacci Sequences
    Sokoll, J.
    Fingerhuth, S.
    ACTA POLYTECHNICA, 2008, 48 (04) : 3 - 7
  • [49] ON PERIODICITY IN GENERALIZED FIBONACCI SEQUENCES
    BLOOM, DM
    AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (08): : 856 - &
  • [50] FIBONACCI SEQUENCES AND MEMORY MANAGEMENT
    LEWIS, TG
    SMITH, BJ
    SMITH, MZ
    FIBONACCI QUARTERLY, 1976, 14 (01): : 37 - 41