Orthogonal polynomial sets with finite codimensions

被引:5
|
作者
Giraud, BG [1 ]
Mehta, ML
Weiguny, A
机构
[1] CE Saclay, CNRS, Serv Phys Theor, F-91191 Gif Sur Yvette, France
[2] Univ Munster, Inst Theoret Phys, D-4400 Munster, Germany
关键词
D O I
10.1016/j.crhy.2004.09.017
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We define sets of orthogonal polynomials which lack one or several degrees, because of a finite number of constraints. In particular, we are interested in a generalization of Hermite polynomials, governed by a constraint of zero average. These are of interest, for example, for the study of the Hohenberg-Kohn functional. In particular, they allow the calculation of potential perturbations which generate strictly proportional density perturbations. (C) 2004 Academie des sciences. Published by Elsevier SAS. All rights reserved.
引用
收藏
页码:781 / 787
页数:7
相关论文
共 50 条
  • [31] ORTHOGONAL POLYNOMIAL-EXPANSIONS FOR FINITE-GROUP TRANSFORMATIONS
    LESCHBER, Y
    DRAAYER, JP
    ROSENSTEEL, G
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1986, 19 (06): : L307 - L311
  • [33] POLYNOMIAL MULTIPLICITIES OVER FINITE-FIELDS AND INTERSECTION SETS
    BRUEN, AA
    JOURNAL OF COMBINATORIAL THEORY SERIES A, 1992, 60 (01) : 19 - 33
  • [34] Sets with many pairs of orthogonal vectors over finite fields
    Ahmadi, Omran
    Mohammadian, Ali
    FINITE FIELDS AND THEIR APPLICATIONS, 2016, 37 : 179 - 192
  • [35] Star-polynomial identities: Computing the exponential growth of the codimensions
    Giambruno, A.
    Polcino Milies, C.
    Valenti, A.
    JOURNAL OF ALGEBRA, 2017, 469 : 302 - 322
  • [36] L-Classical d-Orthogonal Polynomial Sets of Sheffer Type
    Ben Cheikh, Youssef
    Gam, Ines
    FILOMAT, 2019, 33 (03) : 881 - 895
  • [37] Polynomial growth of the codimensions sequence of algebras with group graded involution
    de Oliveira, Maralice Assis
    dos Santos, Rafael Bezerra
    Vieira, Ana Cristina
    ISRAEL JOURNAL OF MATHEMATICS, 2024, 261 (01) : 445 - 471
  • [38] Decomposing polynomial sets into simple sets over finite fields: The zero-dimensional case
    Li, Xiaoliang
    Mou, Chenqi
    Wang, Dongming
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 60 (11) : 2983 - 2997
  • [39] Decomposing polynomial sets into simple sets over finite fields: The positive-dimensional case
    Mou, Chenqi
    Wang, Dongming
    Li, Xiaoliang
    THEORETICAL COMPUTER SCIENCE, 2013, 468 : 102 - 113
  • [40] Involution codimensions of finite dimensional algebras and exponential growth
    Giambruno, A
    Zaicev, M
    JOURNAL OF ALGEBRA, 1999, 222 (02) : 471 - 484