Sphingosine kinase and p38 MAP kinase signaling promote resistance to arsenite-induced lethality in Caenorhabditis elegan

被引:1
|
作者
Kim, Sungjin [1 ]
Sieburth, Derek [1 ,2 ]
机构
[1] Univ Southern Calif, Keck Sch Med, Zilkha Neurogenet Inst, Los Angeles, CA 90033 USA
[2] Univ Southern Calif, Keck Sch Med, Dept Physiol & Neurosci, Los Angeles, CA 90033 USA
关键词
Sphingosine kinase; Oxidative stress; PMK-1; SKN-1; INDUCED OXIDATIVE STRESS; INDUCED APOPTOSIS; PRESYNAPTIC TERMINALS; PROTEIN-KINASE; C-ELEGANS; CERAMIDE; PATHWAY; SPHINGOSINE-1-PHOSPHATE; TRANSLOCATION; MITOCHONDRIA;
D O I
10.1007/s13273-019-0045-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Backgrounds Arsenite is a naturally occurring mitochondrial toxin that generates oxidative stress in vivo. Previously, we have reported that SPHK-1/sphingosine kinase plays a critical role in promoting survival following arsenite exposure in C. elegans. However, the molecular mechanism by which SPHK-1 confers resistance to arsenite-induced toxicity is not known. Methods Using a combination of genetic, fluorescence imaging, and behavioral approaches, we addressed the cellular and molecular mechanism by which SPHK-1 signaling protects animals from arsenite-induced lethality. Results SPHK-1 kinase activity and localization to mitochondria are required for protection from arsenite-induced lethality. Genetic alterations leading to low SPH levels promote resistance to arsenite-mediated toxicity. SPHK-1 functions in the PMK-1/p38 MAPK pathways in the intestine to promote protection. Finally, sphk-1 mutants are sensitive to a range of oxidative stressors including juglone, paraquat and heat. Conclusion SPHK-1 and PMK-1 signaling play important roles in the oxidative stress response in C. elegans.
引用
收藏
页码:415 / 424
页数:10
相关论文
共 50 条
  • [21] PRAK, a novel protein kinase regulated by the p38 MAP kinase
    New, L
    Jiang, Y
    Zhao, M
    Liu, K
    Zhu, W
    Flood, LJ
    Kato, Y
    Parry, GCN
    Han, JH
    EMBO JOURNAL, 1998, 17 (12): : 3372 - 3384
  • [22] TRANSFORMING GROWTH FACTOR-β/P38 MAP KINASE SIGNALING CONTRIBUTES TO SORAFENIB RESISTANCE IN HEPATOMA
    Matsuda, Y.
    Wakai, T.
    Shirai, Y.
    Yano, M.
    Ohkoshi, S.
    Aoyagi, Y.
    Fujimaki, S.
    Sanpei, A.
    Hirano, S.
    JOURNAL OF HEPATOLOGY, 2011, 54 : S272 - S273
  • [23] p38 MAP kinase is involved in the signalling of sphingosine in osteoblasts:: Sphingosine inhibits prostaglandin F2α-induced phosphoinositide hydrolysis
    Kozawa, O
    Kawamura, H
    Matsuno, H
    Uematsu, T
    CELLULAR SIGNALLING, 2000, 12 (07) : 447 - 450
  • [24] p38 MAP kinase signaling is necessary for rat chondrosarcoma cell proliferation
    Halawani, D
    Mondeh, R
    Stanton, LA
    Beier, F
    ONCOGENE, 2004, 23 (20) : 3726 - 3731
  • [25] p38 MAP kinase signaling is necessary for rat chondrosarcoma cell proliferation
    Dalia Halawani
    Rhoda Mondeh
    Lee-Anne Stanton
    Frank Beier
    Oncogene, 2004, 23 : 3726 - 3731
  • [26] Adenosine induced delayed pharmacological preconditioning involves p38 MAP kinase signaling in mouse heart
    Zhao, TC
    Hines, DS
    Krottapalll, K
    Emani, VR
    Xi, L
    Kukreja, RC
    CIRCULATION, 1999, 100 (18) : 562 - 563
  • [27] Cytokines, p38 MAP Kinase and the Pathophysiology of Depression
    Andrew H Miller
    Charles L Raison
    Neuropsychopharmacology, 2006, 31 : 2089 - 2090
  • [28] p38 MAP kinase pathway regulates [GSH]
    Xiu, M
    Huang, CY
    Paulson, KE
    FASEB JOURNAL, 2000, 14 (08): : A1454 - A1454
  • [29] Novel inhibitors of p38 MAP kinase.
    Shetty, R
    Moffett, KK
    Nguyen, D
    Kelly, MJ
    Michelotti, EL
    Dorsey, BD
    Springman, E
    Bukhtiyarova, M
    Northrop, K
    Chai, XM
    Saporito, MS
    Ochman, AR
    Karpusas, M
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2004, 228 : U947 - U947
  • [30] Osteoblastic cell differentiation and p38 MAP kinase
    Dziak, R
    Dahman, M
    Lampasso, J
    BONE, 2005, 36 : S287 - S287