The simplex algorithm for linear programming is based on the fact that any local optimum with respect to the polyhedral neighborhood is also a global optimum. We show that a similar result carries over to submodular maximization. In particular, every local optimum of a constrained monotone submodular maximization problem yields a 1/2-approximation, and we also present an appropriate extension to the nonmonotone setting. Moreover, we describe a very general local search procedure that applies to a wide range of constraint families and unifies as well as extends previous methods. In our framework, we match known approximation guarantees while disentangling and simplifying previous approaches. Moreover, despite its generality, we are able to show that our local search procedure is slightly faster than previous specialized methods. Furthermore, we negatively answer the open question whether a linear optimization oracle may be enough to obtain strong approximation algorithms for submodular maximization. We do this by providing an example of a constraint family on a ground set of size n for which, if only given a linear optimization oracle, any algorithm for submodular maximization with a polynomial number of calls to the linear optimization oracle has an approximation ratio of only O(log n/(root n . log log n)).