Improving weather radar estimates of rainfall using feed-forward neural networks

被引:32
|
作者
Teschl, Reinhard [1 ]
Randeu, Walter L. [1 ]
Teschl, Franz [1 ]
机构
[1] Graz Univ Technol, Dept Broadband Commun, A-8010 Graz, Austria
关键词
feed-forward neural network; weather radar; precipitation; rainfall; reflectivity factor; drop-size distribution; vertical profile of reflectivity; Z-R relationship;
D O I
10.1016/j.neunet.2007.04.005
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper an approach is described to improve weather radar estimates of rainfall based on a neural network technique. Other than rain gauges which measure the rain rate R directly on the ground, the weather radar measures the reflectivity Z aloft and the rain rate has to be determined over a Z-R relationship. Besides the fact that the rain rate has to be estimated from the reflectivity many other sources of possible errors are inherent to the radar system. In other words the radar measurements contain an amount of observation noise which makes it a demanding task to train the network properly. A feed-forward neural network with Z values as input vector was trained to predict the rain rate R on the ground. The results indicate that the model is able to generalize and the determined input-output relationship is also representative for other sites nearby with similar conditions. (C) 2007 Elsevier Ltd. All rights reserved.
引用
收藏
页码:519 / 527
页数:9
相关论文
共 50 条
  • [41] SafetyCage: A misclassification detector for feed-forward neural networks
    Johnsen, Pal Vegard
    Remonato, Filippo
    NORTHERN LIGHTS DEEP LEARNING CONFERENCE, VOL 233, 2024, 233 : 113 - 119
  • [42] An Efficient Hardware Implementation of Feed-Forward Neural Networks
    Tamás Szab#x00F3;
    Gábor Horv#x00E1;th
    Applied Intelligence, 2004, 21 : 143 - 158
  • [43] Invariance priors for Bayesian feed-forward neural networks
    von Toussaint, Udo
    Gori, Silvio
    Dose, Volker
    NEURAL NETWORKS, 2006, 19 (10) : 1550 - 1557
  • [44] The errors in simultaneous approximation by feed-forward neural networks
    Xie, Tingfan
    Cao, Feilong
    NEUROCOMPUTING, 2010, 73 (4-6) : 903 - 907
  • [45] Estimating Model Complexity of Feed-Forward Neural Networks
    Landsittel, Douglas
    JOURNAL OF MODERN APPLIED STATISTICAL METHODS, 2009, 8 (02) : 488 - 504
  • [46] An efficient hardware implementation of feed-forward neural networks
    Szabó, T
    Horváth, G
    APPLIED INTELLIGENCE, 2004, 21 (02) : 143 - 158
  • [47] Flow of Information in Feed-Forward Denoising Neural Networks
    Khadivi, Pejman
    Tandon, Ravi
    Ramakrishnan, Naren
    PROCEEDINGS OF 2018 IEEE 17TH INTERNATIONAL CONFERENCE ON COGNITIVE INFORMATICS & COGNITIVE COMPUTING (ICCI*CC 2018), 2018, : 166 - 173
  • [48] A new scheme for training feed-forward neural networks
    AbdelWahhab, O
    SidAhmed, MA
    PATTERN RECOGNITION, 1997, 30 (03) : 519 - 524
  • [49] A greenhouse control with feed-forward and recurrent neural networks
    Fourati, Fathi
    Chtourou, Mohamed
    SIMULATION MODELLING PRACTICE AND THEORY, 2007, 15 (08) : 1016 - 1028
  • [50] Feed-Forward Neural Networks for Failure Mechanics Problems
    Aldakheel, Fadi
    Satari, Ramish
    Wriggers, Peter
    APPLIED SCIENCES-BASEL, 2021, 11 (14):