Mixed state entanglement classification using artificial neural networks

被引:14
|
作者
Harney, Cillian [1 ]
Paternostro, Mauro [2 ]
Pirandola, Stefano [1 ]
机构
[1] Univ York, Dept Comp Sci, York YO10 5GH, N Yorkshire, England
[2] Queens Univ Belfast, Sch Math & Phys, Ctr Theoret Atom Mol & Opt Phys, Belfast BT7 1NN, Antrim, North Ireland
来源
NEW JOURNAL OF PHYSICS | 2021年 / 23卷 / 06期
基金
欧盟地平线“2020”; 英国工程与自然科学研究理事会;
关键词
entanglement classification; entanglement measures; machine learning; neural network quantum states;
D O I
10.1088/1367-2630/ac0388
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Reliable methods for the classification and quantification of quantum entanglement are fundamental to understanding its exploitation in quantum technologies. One such method, known as separable neural network quantum states (SNNS), employs a neural network inspired parameterization of quantum states whose entanglement properties are explicitly programmable. Combined with generative machine learning methods, this ansatz allows for the study of very specific forms of entanglement which can be used to infer/measure entanglement properties of target quantum states. In this work, we extend the use of SNNS to mixed, multipartite states, providing a versatile and efficient tool for the investigation of intricately entangled quantum systems. We illustrate the effectiveness of our method through a number of examples, such as the computation of novel tripartite entanglement measures, and the approximation of ultimate upper bounds for qudit channel capacities.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Fingerprint classification using solid state sensor with artificial neural networks
    Meena, K.
    Chakravarthy, T.
    [J]. Advances in Modelling and Analysis B, 2008, 51 (1-2): : 21 - 33
  • [2] Surface classification using artificial neural networks
    Mainsah, E
    Ndumu, DT
    Ndumu, AN
    [J]. THREE-DIMENSIONAL IMAGING AND LASER-BASED SYSTEMS FOR METROLOGY AND INSPECTION II, 1997, 2909 : 139 - 150
  • [3] Plant Classification Using Artificial Neural Networks
    Pacifico, Luciano D. S.
    Macario, Valmir
    Oliveira, Joao F. L.
    [J]. 2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [4] Entanglement detection with artificial neural networks
    Asif, Naema
    Khalid, Uman
    Khan, Awais
    Duong, Trung Q.
    Shin, Hyundong
    [J]. SCIENTIFIC REPORTS, 2023, 13 (01)
  • [5] Entanglement detection with artificial neural networks
    Naema Asif
    Uman Khalid
    Awais Khan
    Trung Q. Duong
    Hyundong Shin
    [J]. Scientific Reports, 13
  • [6] Classification of Electroencephalogram Signals Using Artificial Neural Networks
    Rodrigues, Pedro Miguel
    Teixeira, Joao Paulo
    [J]. 2010 3RD INTERNATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING AND INFORMATICS (BMEI 2010), VOLS 1-7, 2010, : 808 - 812
  • [7] Automated galaxy classification using artificial neural networks
    Odewahn, SC
    [J]. APPLICATIONS OF DIGITAL IMAGE PROCESSING XX, 1997, 3164 : 110 - 119
  • [8] Kannada Dialect Classification using Artificial Neural Networks
    Mothukuri, Siva Krishna P.
    Hegde, Pradyoth
    Chittaragi, Nagaratna B.
    Koolagudi, Shashidhar G.
    [J]. 2020 INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND SIGNAL PROCESSING (AISP), 2020,
  • [9] Intelligent Classification of Supernovae Using Artificial Neural Networks
    Brito do Nascimento, Francisca Joamila
    Arantes Filho, Luis Ricardo
    Guimaraes, Nogueira Frutuoso
    [J]. INTELIGENCIA ARTIFICIAL-IBEROAMERICAL JOURNAL OF ARTIFICIAL INTELLIGENCE, 2019, 22 (63): : 39 - 60
  • [10] Classification of brain tumours using artificial neural networks
    Rao, B. V. Subba
    Kondaveti, Raja
    Prasad, R. V. V. S. V.
    Shanmukha, V.
    Sastry, K. B. S.
    Dasaradharam, Bh.
    [J]. ACTA IMEKO, 2022, 11 (01):