Multi-objective optimization for GPU3 Stirling engine by combining multi-objective algorithms

被引:41
|
作者
Luo, Zhongyang [1 ]
Sultan, Umair [1 ]
Ni, Mingjiang [1 ]
Peng, Hao [1 ]
Shi, Bingwei [1 ]
Xiao, Gang [1 ]
机构
[1] Zhejiang Univ, State Key Lab Clean Energy Utilizat, 38 Zheda Rd, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
Stirling engine; Optimization; Differential evolution; Genetic algorithm; Adaptive simulated annealing; THERMODYNAMIC ANALYSIS; THERMAL-MODEL; DYNAMIC SIMULATION; HEAT ENGINE; NSGA-II; PERFORMANCE; DESIGN; EFFICIENCY; POWER; ENERGY;
D O I
10.1016/j.renene.2016.03.008
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Stirling engine has become preferable for high attention towards the use of alternate renewable energy resources like biomass and solar energy. Stirling engine is the main component of dish Stirling system in thermal power generation sector. Stirling engine is an externally heating engine, which theoretical efficiency is as high as Carnot cycle's, but actual ones are always far below compared with the Carnot efficiency. A number of studies have been done on multi-objective optimization to improve the design of Stirling engine. In the current study, a multi-objective optimization method, which is a combination of multiple optimization algorithms including differential evolution, genetic algorithm and adaptive simulated annealing, was proposed. This method is an attempt to generalize and improve the robustness and diversity with above three kinds of population based meta-heuristic optimization techniques. The analogous interpreter was linked and interchanged to find the best global optimal solution for Stirling engine performance optimization. It decreases the chance of convergence at a local minimum by powering from the fact that these three algorithms run parallel and members from each population and technique are swapped. The optimization considers five decision variables, including engine frequency, mean effective pressure, temperature of heating source, number of wires in regenerator matrix, and the wire diameter of regenerator, as multiple objectives. The Pareto optimal frontier was obtained and a final optimal solution was also selected by using various multi-criteria decision making methods including techniques for Order of Preference by Similarity to Ideal Solution and Simple Additive Weighting. The multi-objective optimization indicated a way for GPU-3 Stirling engine to obtain an output power of more than 3 kW and an increase by 5% in thermal efficiency with significant decrease in power loss due to flow resistance. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:114 / 125
页数:12
相关论文
共 50 条
  • [21] Evolutionary algorithms for multi-objective design optimization
    Sefrioui, M
    Whitney, E
    Periaux, J
    Srinivas, K
    [J]. COUPLING OF FLUIDS, STRUCTURES AND WAVES IN AERONAUTICS, PROCEEDINGS, 2003, 85 : 224 - 237
  • [22] A new hybrid memetic multi-objective optimization algorithm for multi-objective optimization
    Luo, Jianping
    Yang, Yun
    Liu, Qiqi
    Li, Xia
    Chen, Minrong
    Gao, Kaizhou
    [J]. INFORMATION SCIENCES, 2018, 448 : 164 - 186
  • [23] Multi-objective boxing match algorithm for multi-objective optimization problems
    Tavakkoli-Moghaddam, Reza
    Akbari, Amir Hosein
    Tanhaeean, Mehrab
    Moghdani, Reza
    Gholian-Jouybari, Fatemeh
    Hajiaghaei-Keshteli, Mostafa
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 239
  • [24] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Guo, Weian
    Chen, Ming
    Wang, Lei
    Wu, Qidi
    [J]. SOFT COMPUTING, 2017, 21 (20) : 5883 - 5891
  • [25] Multi-Objective Factored Evolutionary Optimization and the Multi-Objective Knapsack Problem
    Peerlinck, Amy
    Sheppard, John
    [J]. 2022 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2022,
  • [26] MOCSA: A Multi-Objective Crow Search Algorithm for Multi-Objective Optimization
    Nobahari, Hadi
    Bighashdel, Ariyan
    [J]. 2017 2ND CONFERENCE ON SWARM INTELLIGENCE AND EVOLUTIONARY COMPUTATION (CSIEC), 2017, : 60 - 65
  • [27] Multi-Objective A* Algorithm for the Multimodal Multi-Objective Path Planning Optimization
    Jin, Bo
    [J]. 2021 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC 2021), 2021, : 1704 - 1711
  • [28] Hybrid Multi-Objective Genetic Algorithm for Multi-Objective Optimization Problems
    Zhang, Song
    Wang, Hongfeng
    Yang, Di
    Huang, Min
    [J]. 2015 27TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2015, : 1970 - 1974
  • [29] Hyper multi-objective evolutionary algorithm for multi-objective optimization problems
    Weian Guo
    Ming Chen
    Lei Wang
    Qidi Wu
    [J]. Soft Computing, 2017, 21 : 5883 - 5891
  • [30] Thermodynamic design of Stirling engine using multi-objective particle swarm optimization algorithm
    Duan, Chen
    Wang, Xinggang
    Shu, Shuiming
    Jing, Changwei
    Chang, Huawei
    [J]. ENERGY CONVERSION AND MANAGEMENT, 2014, 84 : 88 - 96