An integrated bioinformatics analysis to dissect kinase dependency in triple negative breast cancer

被引:11
|
作者
Ryall, Karen A. [1 ]
Kim, Jihye [1 ]
Klauck, Peter J. [1 ]
Shin, Jimin [1 ]
Yoo, Minjae [1 ]
Ionkina, Anastasia [1 ]
Pitts, Todd M. [1 ]
Tentler, John J. [1 ]
Diamond, Jennifer R. [1 ]
Eckhardt, S. Gail [1 ]
Heasley, Lynn E. [2 ]
Kang, Jaewoo [3 ]
Tan, Aik Choon [1 ,3 ,4 ]
机构
[1] Univ Colorado, Dept Med, Sch Med, Div Med Oncol, Anschutz Med Campus, Aurora, CO 80045 USA
[2] Univ Colorado, Sch Dent Med, Dept Craniofacial Biol, Aurora, CO 80045 USA
[3] Korea Univ, Dept Comp Sci, Seoul, South Korea
[4] Univ Colorado, Colorado Sch Publ Hlth, Dept Biostat & Informat, Aurora, CO 80045 USA
来源
BMC GENOMICS | 2015年 / 16卷
基金
美国国家卫生研究院;
关键词
GROWTH-FACTOR RECEPTOR; LUNG-CANCER; SYNTHETIC LETHAL; CELL-LINES; SENSITIVITY; EXPRESSION; INHIBITOR; MUTATIONS; IDENTIFICATION; SIGNATURES;
D O I
10.1186/1471-2164-16-S12-S2
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Background: Triple-Negative Breast Cancer (TNBC) is an aggressive disease with a poor prognosis. Clinically, TNBC patients have limited treatment options besides chemotherapy. The goal of this study was to determine the kinase dependency in TNBC cell lines and to predict compounds that could inhibit these kinases using integrative bioinformatics analysis. Results: We integrated publicly available gene expression data, high-throughput pharmacological profiling data, and quantitative in vitro kinase binding data to determine the kinase dependency in 12 TNBC cell lines. We employed Kinase Addiction Ranker (KAR), a novel bioinformatics approach, which integrated these data sources to dissect kinase dependency in TNBC cell lines. We then used the kinase dependency predicted by KAR for each TNBC cell line to query K-Map for compounds targeting these kinases. Wevalidated our predictions using published and new experimental data. Conclusions: In summary, we implemented an integrative bioinformatics analysis that determines kinase dependency in TNBC. Our analysis revealed candidate kinases as potential targets in TNBC for further pharmacological and biological studies.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] An integrated bioinformatics analysis to dissect kinase dependency in triple negative breast cancer
    Karen A Ryall
    Jihye Kim
    Peter J Klauck
    Jimin Shin
    Minjae Yoo
    Anastasia Ionkina
    Todd M Pitts
    John J Tentler
    Jennifer R Diamond
    S Gail Eckhardt
    Lynn E Heasley
    Jaewoo Kang
    Aik Choon Tan
    BMC Genomics, 16
  • [2] Identification of hub genes in triple-negative breast cancer by integrated bioinformatics analysis
    Wei, Li-Min
    Li, Xin-Yang
    Wang, Zi-Ming
    Wang, Yu-Kun
    Yao, Ge
    Fan, Jia-Hao
    Wang, Xin-Shuai
    GLAND SURGERY, 2021, 10 (02) : 799 - 806
  • [3] Identification of Key Genes and Pathways in Triple-Negative Breast Cancer by Integrated Bioinformatics Analysis
    Dong, Pengzhi
    Yu, Bing
    Pan, Lanlan
    Tian, Xiaoxuan
    Liu, Fangfang
    BIOMED RESEARCH INTERNATIONAL, 2018, 2018
  • [4] Using bioinformatics analysis to screen for triple-negative breast cancer biomarkers
    Almalki, N.
    Rakha, E.
    Mongan, N.
    Allegrucci, C.
    JOURNAL OF PATHOLOGY, 2023, 261 : S37 - S37
  • [5] Screening and Bioinformatics Analysis of MicroRNA Biomarkers in Triple-Negative Breast Cancer
    Fan, Jingjing
    Dong, Chao
    Ma, Binlin
    CRITICAL REVIEWS IN EUKARYOTIC GENE EXPRESSION, 2023, 33 (05): : 29 - 37
  • [6] Integrated Bioinformatics Data Analysis Reveals Prognostic Significance Of SIDT1 In Triple-Negative Breast Cancer
    Wang, Ya
    Li, Hanning
    Ma, Jingjing
    Fang, Tian
    Li, Xiaoting
    Liu, Jiahao
    Afewerky, Henok Kessete
    Li, Xiong
    Gao, Qinglei
    ONCOTARGETS AND THERAPY, 2019, 12 : 8401 - 8410
  • [7] Identification of potential core genes in triple negative breast cancer using bioinformatics analysis
    Li, Man-Xiu
    Jin, Li-Ting
    Wang, Tie-Jun
    Feng, Yao-Jun
    Pan, Cui-Ping
    Zhao, Dei-Mian
    Shao, Jun
    ONCOTARGETS AND THERAPY, 2018, 11 : 4105 - 4112
  • [8] Identification of ribosomal protein family in triple-negative breast cancer by bioinformatics analysis
    Lin, Ziyue
    Peng, Rui
    Sun, Yan
    Zhang, Luyu
    Zhang, Zheng
    BIOSCIENCE REPORTS, 2021, 41 (01)
  • [9] Predictors of Chemosensitivity in Triple Negative Breast Cancer: An Integrated Genomic Analysis
    Jiang, Tingting
    Shi, Weiwei
    Wali, Vikram B.
    Pongor, Lorinc S.
    Li, Charles
    Lau, Rosanna
    Gyorffy, Balazs
    Lifton, Richard P.
    Symmans, William F.
    Pusztai, Lajos
    Hatzis, Christos
    PLOS MEDICINE, 2016, 13 (12):
  • [10] Pharmacological Profiling of Kinase Dependency in Cell Lines across Triple-Negative Breast Cancer Subtypes
    Fink, Lauren S.
    Beatty, Alexander
    Devarajan, Karthik
    Peri, Suraj
    Peterson, Jeffrey R.
    MOLECULAR CANCER THERAPEUTICS, 2015, 14 (01) : 298 - 306