Transporting Causal Mechanisms for Unsupervised Domain Adaptation

被引:33
|
作者
Yue, Zhongqi [1 ,3 ]
Sun, Qianru [2 ]
Hua, Xian-Sheng [3 ]
Zhang, Hanwang [1 ]
机构
[1] Nanyang Technol Univ, Singapore, Singapore
[2] Singapore Management Univ, Singapore, Singapore
[3] Alibaba Grp, Damo Acad, Hangzhou, Zhejiang, Peoples R China
关键词
D O I
10.1109/ICCV48922.2021.00848
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Existing Unsupervised Domain Adaptation (UDA) literature adopts the covariate shift and conditional shift assumptions, which essentially encourage models to learn common features across domains. However, due to the lack of supervision in the target domain, they suffer from the semantic loss: the feature will inevitably lose non-discriminative semantics in source domain, which is however discriminative in target domain. We use a causal view-transportability theory [40]-to identify that such loss is in fact a confounding effect, which can only be removed by causal intervention. However, the theoretical solution provided by transportability is far from practical for UDA, because it requires the stratification and representation of the unobserved confounder that is the cause of the domain gap. To this end, we propose a practical solution: Transporting Causal Mechanisms (TCM), to identify the confounder stratum and representations by using the domain-invariant disentangled causal mechanisms, which are discovered in an unsupervised fashion. Our TCM is both theoretically and empirically grounded. Extensive experiments show that TCM achieves state-of-the-art performance on three challenging UDA benchmarks: ImageCLEF-DA, Office-Home, and VisDA-2017.
引用
收藏
页码:8579 / 8588
页数:10
相关论文
共 50 条
  • [31] Unsupervised Evaluation of Lidar Domain Adaptation
    Hubschneider, Christian
    Roesler, Simon
    Zoellner, J. Marius
    2020 IEEE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2020,
  • [32] A Survey of Unsupervised Deep Domain Adaptation
    Wilson, Garrett
    Cook, Diane J.
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2020, 11 (05)
  • [33] MODEL UNCERTAINTY FOR UNSUPERVISED DOMAIN ADAPTATION
    Lee, JoonHo
    Lee, Gyemin
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 1841 - 1845
  • [34] Deep Unsupervised Convolutional Domain Adaptation
    Zhuo, Junbao
    Wang, Shuhui
    Zhang, Weigang
    Huang, Qingming
    PROCEEDINGS OF THE 2017 ACM MULTIMEDIA CONFERENCE (MM'17), 2017, : 261 - 269
  • [35] Unsupervised Domain Adaptation with Similarity Learning
    Pinheiro, Pedro O.
    2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 8004 - 8013
  • [36] On a regularization of unsupervised domain adaptation in RKHS
    Gizewski, Elke R.
    Mayer, Lukas
    Moser, Bernhard A.
    Nguyen, Duc Hoan
    Pereverzyev, Sergiy, Jr.
    Pereverzyev, Sergei V.
    Shepeleva, Natalia
    Zellinger, Werner
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2022, 57 : 201 - 227
  • [37] UNSUPERVISED DOMAIN ADAPTATION WITH COPULA MODELS
    Tran, Cuong D.
    Rudovic, Ognjen
    Pavlovic, Vladimir
    2017 IEEE 27TH INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, 2017,
  • [38] Simplified Neural Unsupervised Domain Adaptation
    Miller, Timothy
    2019 CONFERENCE OF THE NORTH AMERICAN CHAPTER OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS: HUMAN LANGUAGE TECHNOLOGIES (NAACL HLT 2019), VOL. 1, 2019, : 414 - 419
  • [39] Adversarial Robustness for Unsupervised Domain Adaptation
    Awais, Muhammad
    Zhou, Fengwei
    Xu, Hang
    Hong, Lanqing
    Luo, Ping
    Bae, Sung-Ho
    Li, Zhenguo
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2021), 2021, : 8548 - 8557
  • [40] Cross Domain Mean Approximation for Unsupervised Domain Adaptation
    Zang, Shaofei
    Cheng, Yuhu
    Wang, Xuesong
    Yu, Qiang
    Xie, Guo-Sen
    IEEE ACCESS, 2020, 8 : 139052 - 139069