A Dimensional Splitting of ETD Schemes for Reaction-Diffusion Systems

被引:4
|
作者
Asante-Asamani, E. O. [1 ]
Wade, Bruce A. [1 ]
机构
[1] Univ Wisconsin, Dept Math Sci, Milwaukee, WI 53201 USA
关键词
Exponential time differencing; dimensional splitting; reaction diffusion equations; MODEL;
D O I
10.4208/cicp.scpde14.25s
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Novel dimensional splitting techniques are developed for ETD Schemes which are second-order convergent and highly efficient. By using the ETD-Crank-Nicolson scheme we show that the proposed techniques can reduce the computational time for nonlinear reaction-diffusion systems by up to 70%. Numerical tests are performed to empirically validate the superior performance of the splitting methods.
引用
收藏
页码:1343 / 1356
页数:14
相关论文
共 50 条
  • [1] An ETD Crank-Nicolson method for reaction-diffusion systems
    Kleefeld, B.
    Khaliq, A. Q. M.
    Wade, B. A.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2012, 28 (04) : 1309 - 1335
  • [2] Smoothing schemes for reaction-diffusion systems with nonsmooth data
    Khaliq, A. Q. M.
    Martin-Vaquero, J.
    Wade, B. A.
    Yousuf, M.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2009, 223 (01) : 374 - 386
  • [3] Solving efficiently one dimensional parabolic singularly perturbed reaction-diffusion systems: A splitting by components
    Clavero, C.
    Jorge, J. C.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2018, 344 : 1 - 14
  • [4] Stochastic operator-splitting method for reaction-diffusion systems
    Choi, TaiJung
    Maurya, Mano Ram
    Tartakovsky, Daniel M.
    Subramaniam, Shankar
    [J]. JOURNAL OF CHEMICAL PHYSICS, 2012, 137 (18):
  • [5] Convergence of a splitting method of high order for reaction-diffusion systems
    Descombes, S
    [J]. MATHEMATICS OF COMPUTATION, 2001, 70 (236) : 1481 - 1501
  • [6] On the Stability of Finite Difference Schemes for Nonlinear Reaction-Diffusion Systems
    Muyinda, Nathan
    De Baets, Bernard
    Rao, Shodhan
    [J]. INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS (ICNAAM 2017), 2018, 1978
  • [7] SPLITTING SCHEMES AND SEGREGATION IN REACTION CROSS-DIFFUSION SYSTEMS
    Carrillo, J. A.
    Fagioli, S.
    Santambrogio, F.
    Schmidtchen, M.
    [J]. SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (05) : 5695 - 5718
  • [8] Stability of operator splitting methods for systems with indefinite operators: reaction-diffusion systems
    Ropp, DL
    Shadid, JN
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2005, 203 (02) : 449 - 466
  • [9] Adaptive multiresolution schemes with local time stepping for two-dimensional degenerate reaction-diffusion systems
    Bendahmane, Mostafa
    Buerger, Raimund
    Ruiz-Baier, Ricardo
    Schneiderd, Kai
    [J]. APPLIED NUMERICAL MATHEMATICS, 2009, 59 (07) : 1668 - 1692
  • [10] Robust IMEX Schemes for Solving Two-Dimensional Reaction-Diffusion Models
    Owolabi, Kolade M.
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2015, 16 (06) : 271 - 284