A Spectral Analysis of Dot-product Kernels

被引:0
|
作者
Scetbon, Meyer [1 ]
Harchaoui, Zaid [2 ]
机构
[1] CREST, ENSAE, Palaiseau, France
[2] Univ Washington, Seattle, WA 98195 USA
关键词
INTEGRAL-OPERATORS; REGULARIZATION; CLASSIFICATION;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present eigenvalue decay estimates of integral operators associated with compositional dot-product kernels. The estimates improve on previous ones established for power series kernels on spheres. This allows us to obtain the volumes of balls in the corresponding reproducing kernel Hilbert spaces. We discuss the consequences on statistical estimation with compositional dot product kernels and highlight interesting trade-offs between the approximation error and the statistical error depending on the number of compositions and the smoothness of the kernels.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Efficient privacy-preserving dot-product computation for mobile big data
    Hu, Chunqiang
    Huo, Yan
    [J]. IET COMMUNICATIONS, 2017, 11 (05) : 704 - 712
  • [42] In-memory photonic dot-product engine with electrically programmable weight banks
    Wen Zhou
    Bowei Dong
    Nikolaos Farmakidis
    Xuan Li
    Nathan Youngblood
    Kairan Huang
    Yuhan He
    C. David Wright
    Wolfram H. P. Pernice
    Harish Bhaskaran
    [J]. Nature Communications, 14
  • [43] A Correctly-Rounded Fixed-Point-Arithmetic Dot-Product Algorithm
    Boldo, Sylvie
    Gallois-Wong, Diane
    Hilaire, Thibault
    [J]. 2020 IEEE 27TH SYMPOSIUM ON COMPUTER ARITHMETIC (ARITH), 2020, : 9 - 16
  • [44] Impression Prediction of Oral Presentation Using LSTM and Dot-product Attention Mechanism
    Yi, Shengzhou
    Wang, Xueting
    Yamasaki, Toshihiko
    [J]. 2019 IEEE FIFTH INTERNATIONAL CONFERENCE ON MULTIMEDIA BIG DATA (BIGMM 2019), 2019, : 242 - 246
  • [45] DP-MAP: Towards Resistive Dot-Product Engines with Improved Precision
    Uysal, Necati
    Zhang, Baogang
    Jha, Sumit Kumar
    Ewetz, Rickard
    [J]. 2020 IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED-DESIGN (ICCAD), 2020,
  • [46] In-memory photonic dot-product engine with electrically programmable weight banks
    Zhou, Wen
    Dong, Bowei
    Farmakidis, Nikolaos
    Li, Xuan
    Youngblood, Nathan
    Huang, Kairan
    He, Yuhan
    David Wright, C.
    Pernice, Wolfram H. P.
    Bhaskaran, Harish
    [J]. NATURE COMMUNICATIONS, 2023, 14 (01)
  • [47] PDPU: An Open-Source Posit Dot-Product Unit for Deep Learning Applications
    Li, Qiong
    Fang, Chao
    Wang, Zhongfeng
    [J]. 2023 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, ISCAS, 2023,
  • [48] Learning deep kernels in the space of dot product polynomials
    Michele Donini
    Fabio Aiolli
    [J]. Machine Learning, 2017, 106 : 1245 - 1269
  • [49] Function dot product kernels for Support Vector Machine
    Chen, G. Y.
    Bhattacharya, P.
    [J]. 18TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, PROCEEDINGS, 2006, : 614 - +
  • [50] Learning deep kernels in the space of dot product polynomials
    Donini, Michele
    Aiolli, Fabio
    [J]. MACHINE LEARNING, 2017, 106 (9-10) : 1245 - 1269