Detrended Correlogram Method for Non-Stationary Time-Series Analysis

被引:3
|
作者
Zebende, G. F. [1 ]
Guedes, E. F. [2 ]
机构
[1] Univ Estadual Feira de Santana, Dept Phys, Novo Horizonte, BA, Brazil
[2] Univ Fed Reconcavo Bahia, Ctr Exact Sci & Technol, Cruz Das Almas, BA, Brazil
来源
FLUCTUATION AND NOISE LETTERS | 2022年 / 21卷 / 02期
关键词
Correlogram; time series analysis; DCCA cross-correlation coefficient;
D O I
10.1142/S0219477522500122
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A correlogram is a statistical tool that is used to check time-series memory by computing the auto-correlation coefficient as a function of the time lag. If the time-series has no memory, then the auto-correlation must be close to zero for any time lag, otherwise if there is a memory, then the auto-correlations must be significantly different from zero. Therefore, based on the robust detrended cross-correlation coefficient, ppccA, we propose the detrended correlogram method in this paper, which will be tested for some time-series (simulated and empirical). This new statistical tool is able to visualize a complete map of the auto-correlation for many time lags and time-scales, and can therefore analyze the memory effect for any time-series.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] A Statistical Time-Frequency Model for Non-stationary Time Series Analysis
    Luo, Yu
    Wang, Yulin
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2020, 68 : 4757 - 4772
  • [42] A fast approach of implementing the Fourier decomposition method for nonlinear and non-stationary time series analysis
    Kizilkaya, Aydin
    Elbi, Mehmet Dogan
    [J]. SIGNAL PROCESSING, 2023, 206
  • [43] Trend analysis using non-stationary time series clustering based on the finite element method
    Sefidmazgi, M. Gorji
    Sayemuzzaman, M.
    Homaifar, A.
    Jha, M. K.
    Liess, S.
    [J]. NONLINEAR PROCESSES IN GEOPHYSICS, 2014, 21 (03) : 605 - 615
  • [44] An application of two techniques for the analysis of short, multivariate non-stationary time-series of Mauritanian trawl survey data
    Erzini, K
    Inejih, CAO
    Stobberup, KA
    [J]. ICES JOURNAL OF MARINE SCIENCE, 2005, 62 (03) : 353 - 359
  • [45] Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series
    Wollstadt, Patricia
    Martinez-Zarzuela, Mario
    Vicente, Raul
    Diaz-Pernas, Francisco J.
    Wibral, Michael
    [J]. PLOS ONE, 2014, 9 (07):
  • [46] Causal Discovery for Non-stationary Non-linear Time-series Data Using Just-In-Time Modeling
    Fujiwara, Daigo
    Koyama, Kazuki
    Kiritoshi, Keisuke
    Okawachi, Tomomi
    Izumitani, Tomonori
    Shimizu, Shohei
    [J]. CONFERENCE ON CAUSAL LEARNING AND REASONING, VOL 213, 2023, 213 : 880 - 894
  • [47] APPLICABILITY OF KALMAN FILTERING THEORY TO IDENTIFICATION OF TIME-SERIES WITH NON-STATIONARY COVARIANCE-STRUCTURES
    MOSER, AT
    GRAUPE, D
    [J]. INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 1989, 20 (01) : 91 - 96
  • [48] POLYNOMIAL PROJECTING PROPERTIES OF MULTI-TERM PREDICTORS CONTROLLERS IN NON-STATIONARY TIME-SERIES
    RAY, WD
    WYLD, C
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1965, 27 (01) : 144 - 158
  • [49] A Non-stationary Time-series Modeling Approach for CT Image Reconstruction from Truncated Data
    Anoop, K. P.
    Rajgopal, Kasi
    [J]. TENCON 2009 - 2009 IEEE REGION 10 CONFERENCE, VOLS 1-4, 2009, : 1087 - +
  • [50] Forecasting Non-Stationary Diarrhea, Acute Respiratory Infection, and Malaria Time-Series in Niono, Mali
    Medina, Daniel C.
    Findley, Sally E.
    Guindo, Boubacar
    Doumbia, Seydou
    [J]. PLOS ONE, 2007, 2 (11):