GGE biplot vs. AMMI analysis of genotype-by-environment data

被引:832
|
作者
Yan, Weikai
Kang, Manjit S.
Ma, Baoluo
Woods, Sheila
Cornelius, Paul L.
机构
[1] AAFC, ECORC, Ottawa, ON K1A 0C6, Canada
[2] Louisiana State Univ, Ctr Agr, Dept Agr & Environm Management, Baton Rouge, LA 70803 USA
[3] AAFC, CRC, Winnipeg, MB R3T 2M9, Canada
[4] Univ Kentucky, Dept Plant & Soil Sci, Lexington, KY 40506 USA
[5] Univ Kentucky, Dept Stat, Lexington, KY 40506 USA
关键词
D O I
10.2135/cropsci2006.06.0374
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
The use of genotype main effect (G) plus genotype-by-environment (GE) interaction (G+GE) biplot analysis by plant breeders and other agricultural researchers has increased dramatically during the past 5 yr for analyzing multi-environment trial (MET) data. Recently, however, its legitimacy was questioned by a proponent of Additive Main Effect and Multiplicative Interaction (AMMI) analysis. The objectives of this review are: (i) to compare GGE biplot analysis and AMMI analysis on three aspects of genotype-by-environment data (GED) analysis, namely mega-environment analysis, genotype evaluation, and test-environment evaluation; (ii) to discuss whether G and GE should be combined or separated in these three aspects of GED analysis; and (iii) to discuss the role and importance of model diagnosis in biplot analysis of GED. Our main conclusions are: (i) both GGE biplot analysis and AMMI analysis combine rather than separate G and GE in megaenvironment analysis and genotype evaluation, (ii) the GGE biplot is superior to the AMMI1 graph in mega-environment analysis and genotype evaluation because it explains more G+GE and has the inner-product property of the biplot, (iii) the discriminating power vs. representativeness view of the GGE biplot is effective in evaluating test environments, which is not possible in AMMI analysis, and (iv) model diagnosis for each dataset is useful, but accuracy gain from model diagnosis should not be overstated.
引用
收藏
页码:643 / 655
页数:13
相关论文
共 50 条
  • [21] Genotype-by-Environment Interaction Analysis for Quantity and Quality Traits in Faba Beans Using AMMI, GGE Models, and Stability Indices
    Greveniotis, Vasileios
    Bouloumpasi, Elisavet
    Zotis, Stylianos
    Korkovelos, Athanasios
    Kantas, Dimitrios
    Ipsilandis, Constantinos G.
    PLANTS-BASEL, 2023, 12 (21):
  • [22] GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data
    Rakshit, Sujay
    Ganapathy, K. N.
    Gomashe, S. S.
    Rathore, A.
    Ghorade, R. B.
    Kumar, M. V. Nagesh
    Ganesmurthy, K.
    Jain, S. K.
    Kamtar, M. Y.
    Sachan, J. S.
    Ambekar, S. S.
    Ranwa, B. R.
    Kanawade, D. G.
    Balusamy, M.
    Kadam, D.
    Sarkar, A.
    Tonapi, V. A.
    Patil, J. V.
    EUPHYTICA, 2012, 185 (03) : 465 - 479
  • [23] Application of AMMI and GGE biplot for genotype by environment interaction and yield stability analysis in potato genotypes grown in Dawuro zone, Ethiopia
    Daemo, Berhanu Bilate
    Ashango, Zeleke
    JOURNAL OF AGRICULTURE AND FOOD RESEARCH, 2024, 18
  • [24] GGE biplot analysis to evaluate genotype, environment and their interactions in sorghum multi-location data
    Sujay Rakshit
    K. N. Ganapathy
    S. S. Gomashe
    A. Rathore
    R. B. Ghorade
    M. V. Nagesh Kumar
    K. Ganesmurthy
    S. K. Jain
    M. Y. Kamtar
    J. S. Sachan
    S. S. Ambekar
    B. R. Ranwa
    D. G. Kanawade
    M. Balusamy
    D. Kadam
    A. Sarkar
    V. A. Tonapi
    J. V. Patil
    Euphytica, 2012, 185 : 465 - 479
  • [25] GGE biplot analysis of genotype by environment interaction of spring barley varieties
    Solonechnyi, Pavel
    Vasko, Nataliya
    Naumov, Aleksey
    Solonechnaya, Olga
    Vazhenina, Olga
    Bondareva, Olga
    Logvinenko, Yuriy
    ZEMDIRBYSTE-AGRICULTURE, 2015, 102 (04) : 431 - 436
  • [26] Genotype by environment interaction for grain yield in foxtail millet (Setarai italica) using AMMI model and GGE Biplot
    Haiying Zhang
    Zhiwei Feng
    Jin Wang
    Xiaodong Yun
    Fei Qu
    Changqing Sun
    Qian Wang
    Plant Growth Regulation, 2023, 99 : 101 - 112
  • [27] ASSESSMENT OF GENOTYPE X ENVIRONMENT INTERACTIONS FOR GRAIN YIELD IN MAIZE HYBRIDS USING AMMI AND GGE BIPLOT ANALYSES
    Ilker, Emre
    Tonk, Fatma Aykut
    Caylak, Oender
    Tosun, Muzaffer
    Ozmen, Ilker
    TURKISH JOURNAL OF FIELD CROPS, 2009, 14 (02) : 123 - 135
  • [28] GGE Biplot and AMMI Analysis of Barley Yield Performance in Iran
    Vaezi, B.
    Pour-Aboughadareh, A.
    Mohammadi, R.
    Armion, M.
    Mehraban, A.
    Hossein-Pour, T.
    Dorii, M.
    CEREAL RESEARCH COMMUNICATIONS, 2017, 45 (03) : 500 - 511
  • [29] Delineation of genotype-by-environment interactions for identification and validation of resistant genotypes in chickpea to fusarium wilt using GGE biplot
    Srivastava, A. K.
    Saxena, D. R.
    Saabale, P. R.
    Raghuvanshi, K. S.
    Anandani, V. P.
    Singh, R. K.
    Sharma, O. P.
    Wasinikar, A. R.
    Sahni, Sangita
    Varshney, R. K.
    Singh, N. P.
    Dixit, G. P.
    CROP PROTECTION, 2021, 144
  • [30] Genotype by environment interaction for grain yield in foxtail millet (Setarai italica) using AMMI model and GGE Biplot
    Zhang, Haiying
    Feng, Zhiwei
    Wang, Jin
    Yun, Xiaodong
    Qu, Fei
    Sun, Changqing
    Wang, Qian
    PLANT GROWTH REGULATION, 2023, 99 (01) : 101 - 112