A HIGH-ORDER ASYMPTOTIC-PRESERVING SCHEME FOR KINETIC EQUATIONS USING PROJECTIVE INTEGRATION

被引:15
|
作者
Lafitte, Pauline [1 ]
Lejon, Annelies [2 ]
Samaey, Giovanni [2 ]
机构
[1] Ecole Cent Paris, Dept Math, F-99290 Chatenay Malabry, France
[2] Katholieke Univ Leuven, Dept Comp Sci, B-3001 Leuven, Belgium
关键词
projective integration; multiscale; asymptotic preserving; kinetic equations; DIFFUSIVE RELAXATION SCHEMES; WELL-BALANCED SCHEMES; RUNGE-KUTTA METHODS; RADIATIVE-TRANSFER; DISCONTINUOUS GALERKIN; HYPERBOLIC SYSTEMS; BOUNDARY; MODELS; APPROXIMATION; THICK;
D O I
10.1137/140966708
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate a high-order, fully explicit, asymptotic-preserving scheme for a kinetic equation with linear relaxation, both in the hydrodynamic and diffusive scalings in which a hyperbolic, resp., parabolic, limiting equation exists. The scheme first takes a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution and estimate the time derivative of the slow components. These estimated time derivatives are then used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time-step restriction on the outer time step is similar to the stability condition for the limiting macroscopic equation. Moreover, the number of inner time steps is also independent of the scaling parameter. We analyze stability and consistency, and illustrate with numerical results.
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条