Jump-diffusion Stochastic Volatility Model for Estimating the Returns of GBP/CNY Exchange Rates

被引:0
|
作者
Yang, Ruicheng [1 ]
Wang, Fenglei [1 ]
Xia, Bing [2 ]
机构
[1] Ludong Univ, Sch Math & Informat, Yantai, Peoples R China
[2] Military Acad Com Tech Equipment, Dept Petty Off, Beijing, Peoples R China
基金
美国国家科学基金会;
关键词
jump-diffusiont; Brownian motion; MLE; Poisson process;
D O I
10.1109/ICIE.2009.74
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we discuss the volatility of daily returns of GBP/CNY exchange rates, find there exists a leptokurtic feature (higher peak and fat tail) that results from some occasional jumps. So, we introduce the jump-diffusion stochastic volatility model to describe the time series of daily returns, and give the parameter estimations by MLE (maximum likelihood estimation) method. Through the empirical analysis, we compare the simulated data to the real data, derive that the jump-diffusion stochastic volatility model can better fitting the time series of daily returns.
引用
收藏
页码:463 / +
页数:3
相关论文
共 50 条
  • [21] On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility
    Elisa Alòs
    Jorge A. León
    Josep Vives
    [J]. Finance and Stochastics, 2007, 11 : 571 - 589
  • [22] Option Pricing under a Mean Reverting Process with Jump-Diffusion and Jump Stochastic Volatility
    Makate, Nonthiya
    Sattayatham, Pairote
    [J]. THAI JOURNAL OF MATHEMATICS, 2012, 10 (03): : 651 - 660
  • [23] On the short-time behavior of the implied volatility for jump-diffusion models with stochastic volatility
    Alos, Elisa
    Leon, Jorge A.
    Vives, Josep
    [J]. FINANCE AND STOCHASTICS, 2007, 11 (04) : 571 - 589
  • [24] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Minoo Bakhshmohammadlou
    Rahman Farnoosh
    [J]. Mathematical Sciences, 2021, 15 : 337 - 343
  • [25] Importance sampling applied to Greeks for jump-diffusion models with stochastic volatility
    De Diego, Sergio
    Ferreira, Eva
    Nualart, Eulalia
    [J]. JOURNAL OF COMPUTATIONAL FINANCE, 2018, 22 (01) : 79 - 105
  • [26] Reweighted Nadaraya–Watson estimation of stochastic volatility jump-diffusion models
    Ji, Shaolin
    Zhu, Linlin
    [J]. Computers and Mathematics with Applications, 2024, 174 : 352 - 360
  • [27] Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility
    Ke Wang
    Xunxiang Guo
    [J]. Computational Economics, 2024, 63 : 1543 - 1573
  • [28] Hedging of options for jump-diffusion stochastic volatility models by Malliavin calculus
    Bakhshmohammadlou, Minoo
    Farnoosh, Rahman
    [J]. MATHEMATICAL SCIENCES, 2021, 15 (04) : 337 - 343
  • [29] Option pricing for a stochastic-volatility jump-diffusion model with log-uniform jump-amplitudes
    Yan, Guoqing
    Hanson, Floyd B.
    [J]. 2006 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2006, 1-12 : 2989 - +
  • [30] Valuations of Variance and Volatility Swaps Under Double Heston Jump-Diffusion Model With Approximative Fractional Stochastic Volatility
    Wang, Ke
    Guo, Xunxiang
    [J]. COMPUTATIONAL ECONOMICS, 2024, 63 (04) : 1543 - 1573