DEGREES OF SYMMETRIC GROTHENDIECK POLYNOMIALS AND CASTELNUOVO-MUMFORD REGULARITY

被引:7
|
作者
Rajchgot, Jenna [1 ]
Ren, Yi [2 ]
Robichaux, Colleen [3 ]
St Dizier, Avery [3 ]
Weigandt, Anna [4 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON L8S 4K1, Canada
[2] Univ Oxford, Phys & Theoret Chem Lab, Oxford OX1 3QZ, England
[3] Univ Illinois, Dept Math, Urbana, IL 61801 USA
[4] Univ Michigan, Dept Math, Ann Arbor, MI 48109 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
D O I
10.1090/proc/15294
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give an explicit formula for the degree of the Grothendieck polynomial of a Grassmannian permutation and a closely related formula for the Castelnuovo-Mumford regularity of the Schubert determinantal ideal of a Grassmannian permutation. We then provide a counterexample to a conjecture of Kummini-Lakshmibai-Sastry-Seshadri on a formula for regularities of standard open patches of particular Grassmannian Schubert varieties and show that our work gives rise to an alternate explicit formula in these cases. We end with a new conjecture on the regularities of standard open patches of arbitrary Grassmannian Schubert varieties.
引用
收藏
页码:1405 / 1416
页数:12
相关论文
共 50 条