On Goldman bracket for G2 gauge group

被引:2
|
作者
Chowdhury, S. Hasibul Hassan [1 ,2 ]
机构
[1] Nankai Univ, Chern Inst Math, Tianjin 300071, Peoples R China
[2] Concordia Univ, Dept Math & Stat, Montreal, PQ H3G 1M8, Canada
来源
基金
中国国家自然科学基金;
关键词
Wilson; 't Hooft and Polyakov loops; Chern-Simons Theories; Topological Field Theories; FIELD-THEORY;
D O I
10.1007/JHEP02(2016)001
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
In this paper, we obtain an infinite dimensional Lie algebra of exotic gauge invariant observables that is closed under Goldman-type bracket associated with monodromy matrices of flat connections on a compact Riemann surface for G(2) gauge group. As a by-product, we give an alternative derivation of known Goldman bracket for classical gauge groups GL(n,), SL(n,), U(n), SU(n), Sp(2n, lk) and SO(n).
引用
收藏
页码:1 / 33
页数:33
相关论文
共 50 条
  • [41] Periods of meromorphic quadratic differentials and Goldman bracket
    Korotkin, D.
    TOPOLOGICAL RECURSION AND ITS INFLUENCE IN ANALYSIS, GEOMETRY, AND TOPOLOGY, 2018, 100 : 491 - 515
  • [42] Center vortex model and the G(2) gauge group
    Deldar, Sedigheh
    Lookzadeh, Hadi
    Nejad, Seyed Mohsen Hosseini
    IX INTERNATIONAL CONFERENCE ON QUARK CONFINEMENT AND THE HADRON SPECTRUM (QCHS IX), 2011, 1343 : 224 - 226
  • [43] Constant connections, quantum holonomies and the Goldman bracket
    Nelson, J. E.
    Picken, R. F.
    ADVANCES IN THEORETICAL AND MATHEMATICAL PHYSICS, 2005, 9 (03) : 407 - 433
  • [44] On gauge enhancement and singular limits in G2 compactifications of M-theory
    James Halverson
    David R. Morrison
    Journal of High Energy Physics, 2016
  • [45] On gauge enhancement and singular limits in G2 compactifications of M-theory
    Halverson, James
    Morrison, David R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2016, (04):
  • [46] On the geometry of the exceptional group G2(q), q even
    Antonio Cossidente
    Oliver H. King
    Designs, Codes and Cryptography, 2008, 47 : 145 - 157
  • [47] Discrete Fourier Analysis and Chebyshev Polynomials with G2 Group
    Li, Huiyuan
    Sun, Jiachang
    Xu, Yuan
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2012, 8
  • [48] Lusztig-Vogan Bijection for the Complex Group G2
    Zhang, Mingjing
    JOURNAL OF LIE THEORY, 2019, 29 (04) : 1137 - 1152
  • [49] THE BRAID GROUP SURJECTS ONTO G2 TENSOR SPACE
    Morrison, Scott
    PACIFIC JOURNAL OF MATHEMATICS, 2011, 249 (01) : 189 - 198
  • [50] RIEMANNIAN-MANIFOLDS WITH STRUCTURE-GROUP G2
    FERNANDEZ, M
    GRAY, A
    ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 132 : 19 - 45