The Spring of Systems Biology-Driven Breeding

被引:26
|
作者
Lavarenne, Jeremy [1 ,2 ]
Guyomarc'h, Soazig [1 ]
Sallaud, Christophe [2 ]
Gantet, Pascal [1 ]
Lucas, Mikael [1 ]
机构
[1] Univ Montpellier, IRD, UMR DIADE, 911 Ave Agropolis, F-34394 Montpellier 5, France
[2] Ctr Rech Chappes, Biogemma, Route dEnnezat, F-63720 Chappes, France
关键词
GENE REGULATORY NETWORK; PROTEIN-INTERACTION NETWORKS; MARKER-ASSISTED SELECTION; TRANSCRIPTION FACTORS; PRIOR KNOWLEDGE; INFERENCE; MODELS; OMICS; CELLS; TOOLS;
D O I
10.1016/j.tplants.2018.04.005
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Genetics and molecular biology have contributed to the development of rationalized plant breeding programs. Recent developments in both high-throughput experimental analyses of biological systems and in silico data processing offer the possibility to address the whole gene regulatory network (GRN) controlling a given trait. GRN models can be applied to identify topological features helping to shortlist potential candidate genes for breeding purposes. Time-series data sets can be used to support dynamic modelling of the network. This will enable a deeper comprehension of network behaviour and the identification of the few elements to be genetically rewired to push the system towards a modified phenotype of interest. This paves the way to design more efficient, systems biology-based breeding strategies.
引用
下载
收藏
页码:706 / 720
页数:15
相关论文
共 50 条
  • [21] Is a molecular tumor conference a tool for biology-driven potentials in advanced malignancies?
    Jaspers, S.
    Schulze, S.
    Sorge, P.
    Jaekel, N.
    Haak, A.
    Siebolts, U.
    Hoffmann, K.
    Wickenhauser, C.
    Al-Ali, H. K.
    ONCOLOGY RESEARCH AND TREATMENT, 2020, 43 (SUPPL 4) : 232 - 232
  • [22] Pathology challenges for biology-driven trials: The Ki67 experience
    Dowsett, M.
    EUROPEAN JOURNAL OF CANCER, 2013, 49 : S1 - S2
  • [23] ResponderID™ KRAS: Biology-driven machine learning to personalize KRAS inhibitor therapeutics
    Wheeler, Josh
    Lovse, Anze
    Ziberna, Klemen
    Stajdohar, Miha
    Ausec, Luka
    Kokosar, Janez
    Pointing, Daniel
    Pai, Aditya
    Rosengarten, Rafael
    Uhlik, Mark
    CANCER RESEARCH, 2024, 84 (06)
  • [24] Implementation of mechanism of action biology-driven early drug development for children with cancer
    Pearson, Andrew D. J.
    Herold, Ralf
    Rousseau, Raphael
    Copland, Chris
    Bradley-Garelik, Brigid
    Binner, Debbie
    Capdeville, Renaud
    Caron, Hubert
    Carleer, Jacqueline
    Chesler, Louis
    Geoerger, Birgit
    Kearns, Pamela
    Marshall, Lynley V.
    Pfister, Stefan M.
    Schleiermacher, Gudrun
    Skolnik, Jeffrey
    Spadoni, Cesare
    Sterba, Jaroslav
    van den Berg, Hendrick
    Uttenreuther-Fischer, Martina
    Witt, Olaf
    Norga, Koen
    Vassal, Gilles
    EUROPEAN JOURNAL OF CANCER, 2016, 62 : 124 - 131
  • [25] A biology-driven deep generative model for cell-type annotation in cytometry
    Blampey, Quentin
    Bercovici, Nadege
    Dutertre, Charles-Antoine
    Pic, Isabelle
    Ribeiro, Joana Mourato
    Andre, Fabrice
    Cournede, Paul-Henry
    BRIEFINGS IN BIOINFORMATICS, 2023, 24 (05)
  • [26] Gut microbiota modulation with traditional Chinese medicine: A system biology-driven approach
    Yue, Shi-Jun
    Wang, Wen-Xiao
    Yu, Jin-Gao
    Chen, Yan-Yan
    Shi, Xu-Qin
    Yan, Dan
    Zhou, Gui-Sheng
    Zhang, Li
    Wang, Chang-Yun
    Duan, Jin-Ao
    Tang, Yu -Ping
    PHARMACOLOGICAL RESEARCH, 2019, 148
  • [27] Biology-driven developments in the therapy of acute graft-versus-host disease
    Zeiser, Robert
    HEMATOLOGY-AMERICAN SOCIETY OF HEMATOLOGY EDUCATION PROGRAM, 2018, : 236 - 241
  • [28] Biology-Driven Phase II Trials: What Is the Optimal Model for Molecular Selection?
    Andre, Fabrice
    Delaloge, Suzette
    Soria, Jean-Charles
    JOURNAL OF CLINICAL ONCOLOGY, 2011, 29 (10) : 1236 - 1238
  • [29] Biology-driven therapy advances in high-grade serous ovarian cancer
    Wang, Yinu
    Duval, Alexander James
    Adli, Mazhar
    Matei, Daniela
    JOURNAL OF CLINICAL INVESTIGATION, 2024, 134 (01):
  • [30] A Biology-Driven Deep-Learning Based Cell Survival Model for Proton Radiation
    Lai, Y.
    Shen, C.
    Chi, Y.
    Guan, F.
    Jia, X.
    MEDICAL PHYSICS, 2021, 48 (06)