Optimization of the PDMS/biochar nanocomposite membranes using the response surface methodology

被引:2
|
作者
Lan, Yongqiang [3 ,4 ]
Yan, Ning [1 ,2 ]
Wang, Weihong [3 ]
机构
[1] Univ Toronto, Fac Forestry, 33 Willcocks St, Toronto, ON M5S 3B3, Canada
[2] Univ Toronto, Dept Chem Engn & Appl Chem, 200 Coll St, Toronto, ON M5S 3E5, Canada
[3] Northeast Forestry Univ, Key Lab Biobased Mat Sci & Technol, Educ Minist, Harbin 150040, Heilongjiang, Peoples R China
[4] Sanming Univ, Coll Resources & Chem Engn, Sanming 365004, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
biochar; pervaporation; polydimethylsiloxane; response surface methodology; PERVAPORATION MEMBRANES; RSM; SEPARATION; PERFORMANCE; MIXTURES; DESIGN;
D O I
10.1515/secm-2016-0382
中图分类号
TB33 [复合材料];
学科分类号
摘要
To improve the separation performance of the polydimethylsiloxane (PDMS)/bark biochar (BB) nano-composite membranes used for alcohol/water separation, the preparation conditions of these composite membranes were analyzed and optimized. In this study, we investigated the following preparation parameters: the BB pyrolysis temperature, the weight ratio of the silane coupling agent (KH-550) to bark biochar (BB), and the BB loading amount. The regression equations were established between these three preparation parameters and the final pervaporation (PV) performance characteristics of the composite membranes. The membranes performed the best under the following optimal preparation conditions: a BB pyrolysis temperature of 407 degrees C; a silane coupling reagent/BB weight ratio of 0.86, and a BB loading amount of 3.36 wt%. According to the results of the regression analysis, a maximum permeation flux of 221.2 g.m(-2).h(-1) and a maximum selective factor of 21.3 was obtained when the feed temperature for the 5 wt% alcohol solution was set at 40 degrees C.
引用
收藏
页码:947 / 956
页数:10
相关论文
共 50 条
  • [21] Optimization of Acrylic Acid Grafting onto POSS-PCU Nanocomposite Using Response Surface Methodology
    Solouk, Atefeh
    Solati-Hashjin, Mehran
    Najarian, Siamak
    Mirzadeh, Hamid
    Seifalian, Alexander M.
    IRANIAN POLYMER JOURNAL, 2011, 20 (02) : 91 - 107
  • [22] Optimization of lead removal from aqueous solution using goethite/chitosan nanocomposite by response surface methodology
    Rahimi, Safoora
    Moattari, Rozita M.
    Rajabi, Laleh
    Derakhshan, Ali Ashraf
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2015, 484 : 216 - 225
  • [23] Surface modification of nanocomposite ceramic membranes by PDMS for condensable hydrocarbons separation
    Jannatduost, E.
    Babaluo, A. A.
    Abbasi, F.
    Ardestani, M. Akhfash
    Peyravi, M.
    DESALINATION, 2010, 250 (03) : 1136 - 1139
  • [24] Screening of sugarcane bagasse-derived biochar for phenol adsorption: optimization study using response surface methodology
    K. Saini
    B. Biswas
    A. Kumar
    A. Sahoo
    J. Kumar
    T. Bhaskar
    International Journal of Environmental Science and Technology, 2022, 19 : 8797 - 8810
  • [25] Optimization of Geometry Parameters of Inkjet-Printed Silver Nanoparticle Traces on PDMS Substrates Using Response Surface Methodology
    Abu-Khalaf, Jumana
    Al-Ghussain, Loiy
    Nadi, Ahmad
    Saraireh, Razan
    Rabayah, Abdulrahman
    Altarazi, Safwan
    Al-Halhouli, Ala'aldeen
    MATERIALS, 2019, 12 (20)
  • [26] Screening of sugarcane bagasse-derived biochar for phenol adsorption: optimization study using response surface methodology
    Saini, K.
    Biswas, B.
    Kumar, A.
    Sahoo, A.
    Kumar, J.
    Bhaskar, T.
    INTERNATIONAL JOURNAL OF ENVIRONMENTAL SCIENCE AND TECHNOLOGY, 2022, 19 (09) : 8797 - 8810
  • [27] Adsorption parameters optimization of spent coffee ground biochar for methylene blue removal using response surface methodology
    Nagarajan, Thachnatharen
    Binti Mohd Fekeri, Nazifa Huda
    Raju, Gunasunderi
    Shanmugan, Subramani
    Jeppu, Gautham
    Walvekar, Rashmi
    Rustagi, Sarvesh
    Khalid, Mohammad
    Chemosphere, 364
  • [28] Optimization of thermoacoustic refrigerator using response surface methodology
    Hariharan, N. M.
    Sivashanmugam, P.
    Kasthurirengan, S.
    JOURNAL OF HYDRODYNAMICS, 2013, 25 (01) : 72 - 82
  • [29] Optimization of mead production using Response Surface Methodology
    Gomes, Teresa
    Barradas, Carla
    Dias, Teresa
    Verdial, Joao
    Morais, Jorge Sa
    Ramalhosa, Elsa
    Estevinho, Leticia M.
    FOOD AND CHEMICAL TOXICOLOGY, 2013, 59 : 680 - 686
  • [30] Optimization of Magnetic Suspension using Response Surface Methodology
    Lim, Ho-Kyoung
    Jung, Jae-Woo
    Hong, Jung-Pyo
    INTELEC 09 - 31ST INTERNATIONAL TELECOMMUNICATIONS ENERGY CONFERENCE, 2009, : 937 - 940