Residual symmetries and soliton-cnoidal wave interaction solutions for the negative-order Korteweg-de Vries equation

被引:53
|
作者
Chen, Junchao [1 ,2 ]
Zhu, Shundong [1 ]
机构
[1] Lishui Univ, Dept Math, Lishui 323000, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
关键词
Negative-order KdV equation; Residual symmetry; nth backlund transformation; Consistent tanh expansion method; Soliton-cnoidal wave interaction solution; PARTIAL-DIFFERENTIAL-EQUATIONS; EVOLUTION-EQUATIONS; PAINLEVE;
D O I
10.1016/j.aml.2017.05.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The residual symmetry is derived for the negative-order Korteweg-de Vries equation from the truncated Painleve expansion. This nonlocal symmetry is transformed into the Lie point symmetry and the finite symmetry transformation is presented. The multiple residual symmetries are constructed and localized by introducing new auxiliary variables, and then nth Backlund transformation in terms of determinant is provided. With the help of the consistent tanh expansion (GTE) method, the explicit soliton-cnoidal wave interaction solutions are obtained from the last consistent differential equation. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:136 / 142
页数:7
相关论文
共 50 条
  • [32] The orbital stability of the cnoidal waves of the Korteweg-de Vries equation
    Deconinck, Bernard
    Kapitula, Todd
    PHYSICS LETTERS A, 2010, 374 (39) : 4018 - 4022
  • [33] Soliton interaction with external forcing within the Korteweg-de Vries equation
    Ermakov, Andrei
    Stepanyants, Yury
    CHAOS, 2019, 29 (01)
  • [34] Bright Soliton Solutions for Time Fractional Korteweg-de Vries Equation
    Ozkan, Erdogan Mehmet
    Ozkan, Ayten
    INTERNATIONAL CONFERENCE ON ANALYSIS AND APPLIED MATHEMATICS (ICAAM 2020), 2021, 2325
  • [35] Discrete Negative Order Potential Korteweg-de Vries Equation
    Zhao, Song-lin
    Sun, Ying-ying
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (12): : 1151 - 1158
  • [36] On the structure of the two-soliton interaction for the Korteweg-de Vries equation
    Kovalyov, M
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 152 (02) : 431 - 438
  • [37] SOLITON SOLUTIONS AND HIGHER-ORDER KORTEWEG-DE VRIES EQUATIONS
    MORRIS, HC
    JOURNAL OF MATHEMATICAL PHYSICS, 1977, 18 (03) : 530 - 532
  • [38] Lump and Interaction solutions of a geophysical Korteweg-de Vries equation
    Rizvi, S. T. R.
    Seadawy, Aly R.
    Ashraf, F.
    Younis, M.
    Iqbal, H.
    Baleanu, Dumitru
    RESULTS IN PHYSICS, 2020, 19
  • [39] MULTIPLE SOLITON PRODUCTION AND KORTEWEG-DE VRIES EQUATION
    HERSHKOWITZ, N
    ROMESSER, T
    MONTGOMERY, D
    PHYSICAL REVIEW LETTERS, 1972, 29 (24) : 1586 - +
  • [40] Soliton-like solutions of higher order wave equations of the Korteweg-de Vries type
    Tzirtzilakis, E
    Marinakis, V
    Apokis, C
    Bountis, T
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (12) : 6151 - 6165