EEG signal classification based on PCA and NN

被引:0
|
作者
Oh, Changmok [1 ]
Kim, Min-Soeng [1 ]
Lee, Ju-Jang [1 ]
机构
[1] Dept Elect Engn & Comp Sci, Taejon, South Korea
关键词
principal component analysis; neural network; electroencephalogram;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Electroencephalogram (EEG) pattern classification plays an important role in the domain of brain computer interface. However, EEG data is a multivariate time series data which contains noise and artifacts. In this paper we present methods contains for EEG pattern classification which jointly employ principal component analysis (PCA) and neural networks (NN). We believe that this hybrid approach offers the better chance for reliable classification of the EEG signal.
引用
收藏
页码:4760 / +
页数:3
相关论文
共 50 条
  • [31] Employing PCA and t-statistical approach for feature extraction and classification of emotion from multichannel EEG signal
    Rahman, Md Asadur
    Hossain, Md Foisal
    Hossain, Mazhar
    Ahmmed, Rasel
    EGYPTIAN INFORMATICS JOURNAL, 2020, 21 (01) : 23 - 35
  • [32] A Robust Image Watermarking Algorithm based on PCA and NN
    Wang, Wei
    Li, Wenhui
    Zheng, Jiangchao
    ADVANCES IN APPLIED SCIENCE, ENGINEERING AND TECHNOLOGY, 2013, 709 : 654 - 657
  • [33] FEATURE EXTRACTION AND CLASSIFICATION OF EEG SIGNAL
    Padhy, Prabin Kumar
    Kumar, Avinash
    Chandra, Vivek
    Thumula, Kalyan Rao
    2011 INTERNATIONAL CONFERENCE ON MECHANICAL ENGINEERING AND TECHNOLOGY (ICMET 2011), 2011, : 237 - 240
  • [34] Feature Extraction and Classification of EEG Signal
    Padhy, Prabin Kumar
    Kumar, Avinash
    Chandra, Vivek
    Thumula, Kalyan Rao
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL I, 2010, : 10 - 13
  • [35] Independent Components for EEG Signal Classification
    Olivier, Tobie Erhard
    Du, Shengzhi
    van Wyk, Barend Jacobus
    Hamam, Yskandar
    PROCEEDINGS OF THE 2016 INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATION PROCESSING (ICIIP'16), 2016,
  • [36] k-NN and LDA based Motor Imagery EEG Classification using Phase Features
    Bhatnagar, Maanvi
    Gupta, Gauri Shanker
    Sinha, Rakesh Kumar
    2018 5TH IEEE UTTAR PRADESH SECTION INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND COMPUTER ENGINEERING (UPCON), 2018, : 429 - 434
  • [37] EEG Signal Classification in Usability Experiments
    do Amaral, Vagner
    Ferreira, Leonardo A.
    Aquino Junior, Plinio T.
    de Castro, Maria Claudia F.
    2013 ISSNIP BIOSIGNALS AND BIOROBOTICS CONFERENCE (BRC), 2013, : 116 - 120
  • [38] Nonlinear considerations in EEG signal classification
    Hazarika, N
    Tsoi, AC
    Sergejew, AA
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1997, 45 (04) : 829 - 836
  • [39] EEG Signal Classification: Introduction to the Problem
    Stastny, Jakub
    Sovka, Pavel
    Stancak, Andrej
    RADIOENGINEERING, 2003, 12 (03) : 51 - 55
  • [40] High accuracy classification of EEG signal
    Xu, WJ
    Guan, CT
    Siong, CE
    Ranganatha, S
    Thulasidas, M
    Wu, JK
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION, VOL 2, 2004, : 391 - 394