A Survey on Bounding Volume Hierarchies for Ray Tracing

被引:39
|
作者
Meister, Daniel [1 ]
Ogaki, Shinji [2 ]
Benthin, Carsten [3 ]
Doyle, Michael J. [3 ]
Guthe, Michael [4 ]
Bittner, Jiri [5 ]
机构
[1] Univ Tokyo, Tokyo, Japan
[2] ZOZO Res, Chiba, Japan
[3] Intel Corp, Santa Clara, CA 95051 USA
[4] Univ Bayreuth, Bayreuth, Germany
[5] Czech Tech Univ, Prague, Czech Republic
关键词
<bold>CCS Concepts</bold>; <bold>center dot Computing methodologies</bold> -> <bold>Ray tracing</bold>; <bold>Visibility</bold>; <bold>Massively parallel algorithms</bold>; <bold>center dot Theory of computation</bold> -> <bold>Computational geometry</bold>; <bold>Sorting and searching</bold>; BVH CONSTRUCTION; TRAVERSAL ORDER; PARALLEL; ARCHITECTURE;
D O I
10.1111/cgf.142662
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Ray tracing is an inherent part of photorealistic image synthesis algorithms. The problem of ray tracing is to find the nearest intersection with a given ray and scene. Although this geometric operation is relatively simple, in practice, we have to evaluate billions of such operations as the scene consists of millions of primitives, and the image synthesis algorithms require a high number of samples to provide a plausible result. Thus, scene primitives are commonly arranged in spatial data structures to accelerate the search. In the last two decades, the bounding volume hierarchy (BVH) has become the de facto standard acceleration data structure for ray tracing-based rendering algorithms in offline and recently also in real-time applications. In this report, we review the basic principles of bounding volume hierarchies as well as advanced state of the art methods with a focus on the construction and traversal. Furthermore, we discuss industrial frameworks, specialized hardware architectures, other applications of bounding volume hierarchies, best practices, and related open problems.
引用
收藏
页码:683 / 712
页数:30
相关论文
共 50 条
  • [21] Cache-efficient layouts of bounding volume hierarchies
    Yoon, Sung-Eui
    Manocha, Dinesh
    COMPUTER GRAPHICS FORUM, 2006, 25 (03) : 507 - 516
  • [22] Temporal coherence in bounding volume hierarchies for collision detection
    Technion, Department of Electrical Engineering, Haifa, 32000, Israel
    不详
    不详
    Int. J. Shaping Model., 2006, 2 (159-178):
  • [23] Computing bounding volume hierarchies using model simplification
    Tan, Tiow-Seng
    Chong, Ket-Fah
    Low, Kok-Lim
    Proceedings of the Symposium on Interactive 3D Graphics, 1999, : 63 - 69
  • [24] Hybrid bounding volume hierarchies for fast proximity queries
    Kim, DH
    Choi, HS
    ICMIT 2005: INFORMATION SYSTEMS AND SIGNAL PROCESSING, 2005, 6041
  • [25] RACBVHs: Random-Accessible Compressed Bounding Volume Hierarchies
    Kim, Tae-Joon
    Moon, Bochang
    Kim, Duksu
    Yoon, Sung-Eui
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (02) : 273 - 286
  • [26] SIMDop: SIMD Optimized Bounding Volume Hierarchies for Collision Detection
    Tan, Toni
    Weller, Rene
    Zachmann, Gabriel
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 7256 - 7263
  • [27] On the fast construction of spatial hierarchies for ray tracing
    Havran, Vlastimil
    Herzog, Robert
    Seidel, Hans-Peter
    RT 06: IEEE SYMPOSIUM ON INTERACTIVE RAY TRACING 2006, PROCEEDINGS, 2006, : 71 - +
  • [28] Accessibility analysis for automatic inspection using bounding volume hierarchies
    Alvarez, B. J.
    Fernandez, P.
    Mateos, S.
    Rico, J. C.
    Suarez, C. M.
    2006 IEEE CONFERENCE ON EMERGING TECHNOLOGIES & FACTORY AUTOMATION, VOLS 1 -3, 2006, : 237 - +
  • [29] Memory-conserving bounding volume hierarchies with coherent raytracing
    Mahovsky, J.
    Wyvill, B.
    COMPUTER GRAPHICS FORUM, 2006, 25 (02) : 173 - 182
  • [30] Fast Hardware Construction and Refitting of Quantized Bounding Volume Hierarchies
    Viitanen, T.
    Koskela, M.
    Jaaskelainen, P.
    Immonen, K.
    Takala, J.
    COMPUTER GRAPHICS FORUM, 2017, 36 (04) : 167 - 178