IDENTIFICATION OF ANTIPSYCHOTIC DRUG RESPONSE PHENOTYPES BY CLUSTERING LONGITUDINAL DATA: A CRITICAL STEP FOR PERSONALIZED MEDICINE

被引:0
|
作者
Mas, S. [1 ,2 ,3 ]
Boloc, D. [4 ]
Torres, T. [1 ]
Martinez, A. [1 ]
Rodriguez, N. [1 ]
Parellada, M. [3 ,5 ]
Saiz-Ruiz, J. [3 ,6 ]
Cuesta, M. J. [3 ,7 ]
Gasso, P. [1 ]
Bernardo, M. [2 ,3 ,8 ]
Lafuente, A. [1 ,2 ,3 ]
机构
[1] Univ Barcelona, Dept Med, Barcelona, Spain
[2] August Pi & Sunyer Biomed Res Inst IDIBAPS, Barcelona, Spain
[3] Carlos III Hlth Inst, Ctr Invest Biomed Red Salud Mental CIBERSAM, Madrid, Spain
[4] Univ Barcelona, Pharmacol Unit, Dept Clin Fdn, Barcelona, Spain
[5] Univ Complutense, IiSGM, Child & Adolescent Psychiat Dept, Hosp Gen Univ Gregorio Maranon,Sch Med, Madrid, Spain
[6] Univ Alcala, IRYCIS, Hosp Ramon y Cajal, Madrid, Spain
[7] Complejo Hospitalario Navarra, Inst Invest Sanitaria Navarra IdiSNA, Dept Psychiat, Pamplona, Spain
[8] Hosp Clin Barcelona, Barcelona Clin Schizophrenia Unit, Barcelona, Spain
关键词
pharmacogenetics; personalized medicine; antipsychotics; clustering;
D O I
暂无
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
P157
引用
收藏
页码:94 / 94
页数:1
相关论文
共 50 条
  • [1] Defining phenotypes in rhinitis: A step toward personalized medicine
    Giavina-Bianchi, Pedro
    JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY, 2015, 135 (01) : 151 - 152
  • [2] Defining Phenotypes in Asthma: A Step Towards Personalized Medicine
    Kian Fan Chung
    Drugs, 2014, 74 : 719 - 728
  • [3] Defining Phenotypes in Asthma: A Step Towards Personalized Medicine
    Chung, Kian Fan
    DRUGS, 2014, 74 (07) : 719 - 728
  • [4] Personalized medicine begins with the phenotype: identifying antipsychotic response phenotypes in a first-episode psychosis cohort
    Mas, S.
    Gasso, P.
    Rodriguez, N.
    Cabrera, B.
    Mezquida, G.
    Lobo, A.
    Gonzalez-Pinto, A.
    Parellada, M.
    Corripio, I.
    Vieta, E.
    Castro-Fornieles, J.
    Bobes, J.
    Usall, J.
    Saiz-Ruiz, J.
    Contreras, F.
    Parellada, E.
    Bernardo, M.
    Lafuente, Amalia
    Bioque, Miquel
    Diaz-Caneja, Covadonga M.
    Gonzalez-Penas, Javier
    Solis, Anna Alonso
    Rebella, Mireia
    Gonzalez-Ortega, Itxaso
    Besga, Ariadna
    SanJuan, Julio
    Nacher, Juan
    Morro, Laura
    Montserrat, Clara
    Jimenez, Esther
    Gomes Da Costa, Susana
    Baeza, Immaculada
    de la Serna, Elena
    Rivas, S.
    Diaz, C.
    Saiz, Pilar A.
    Garcia-Alvarez, Leticia
    Gutierrez Fraile, Miguel
    Zabala Rabadan, Arantzazu
    Torio, Iosune
    Rodriguez-Jimenez, Roberto
    Butjosa, Anna
    Pardo, Marta
    Sarro, Salvador
    Pomarol-Clotet, Edith
    Ibanez Cuadrado, Angela
    Cuesta, Manuel J.
    ACTA PSYCHIATRICA SCANDINAVICA, 2020, 141 (06) : 541 - 552
  • [5] Longitudinal assessment of the inflammatory response: The next step in personalized medicine after severe trauma
    de Fraiture, E. J.
    Vrisekoop, N.
    Leenen, L. P. H.
    van Wessem, K. J. P.
    Koenderman, L.
    Hietbrink, F.
    FRONTIERS IN MEDICINE, 2022, 9
  • [6] Pharmacogenetics of metformin response: a step in the path toward personalized medicine
    Reitman, Marc L.
    Schadt, Eric E.
    JOURNAL OF CLINICAL INVESTIGATION, 2007, 117 (05): : 1226 - 1229
  • [7] Personalized medicine: Genetic risk prediction of drug response
    Zhang, Ge
    Nebert, Daniel W.
    PHARMACOLOGY & THERAPEUTICS, 2017, 175 : 75 - 90
  • [8] A matrix completion method for drug response prediction in personalized medicine
    Nguyen, Giang T. T.
    Duc-Hau Le
    PROCEEDINGS OF THE NINTH INTERNATIONAL SYMPOSIUM ON INFORMATION AND COMMUNICATION TECHNOLOGY (SOICT 2018), 2018, : 410 - 415
  • [9] Healthy Knee Kinematic Phenotypes Identification Based on a Clustering Data Analysis
    Mezghani, Neila
    Soltana, Rayan
    Ouakrim, Youssef
    Cagnin, Alix
    Fuentes, Alexandre
    Hagemeister, Nicola
    Vendittoli, Pascal-Andre
    APPLIED SCIENCES-BASEL, 2021, 11 (24):
  • [10] PerDREP: Personalized Drug Effectiveness Prediction from Longitudinal Observational Data
    Dey, Sanjoy
    Zhang, Ping
    Sow, Daby
    Ng, Kenney
    KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, : 1258 - 1268