Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning

被引:37
|
作者
Bai, Yu [1 ]
Xing, Jichuan [1 ]
Xie, Fei [2 ]
Liu, Sujie [3 ]
Li, Jinxin [1 ]
机构
[1] Beijing Inst Technol, Optoelect Dept, 5 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Portland State Univ, Dept Comp Sci, Portland, OR 97201 USA
[3] China Petr & Gas Pipeline Bur, Natl Engn Lab Pipeline Transportat Secur, Langfang 065000, Hebei, Peoples R China
关键词
Signal recognition; Distributed fiber optic sensing; Deep learning; Neural network; RECOGNITION; PERFORMANCE;
D O I
10.1016/j.yofte.2019.102060
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In real-world environments, it is usually hard to achieve accurate identification and classification of external vibration signals collected by optical fiber. In this paper, we have applied deep neural networks to a 33 km optical fiber sensing system to recognize and classify the signals of the external intrusion (third-party intrusion) events. It enables the fast identification and localization of the destructive events in complex environments with large amount of monitoring data. Pipeline intrusion events intelligent identification system in this paper is mainly divided into two parts: a distributed acoustic sensing (DAS) System and a pattern recognition system (PRS). DAS was utilized to monitor external intrusion signals in the real-world environment. A Deep learning model, which is called Convolutional, Long Short-Term Memory, Fully Connected Deep Neural Networks (CLDNN), is first applied in PRS to directly input the time series of data into the network for deep learning without any preprocessing, which is simpler and better than the ways used in the previous work. After training and testing with real data, the average recognition rate of the constructed model for intrusion events can reach over 97%. Finally, 33 km blind tests were carried out to verify that the model has good recognition, classification and localization applications for external intrusion signals in the real-world environment.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] DeepIIoT: An Explainable Deep Learning Based Intrusion Detection System for Industrial IOT
    Alani, Mohammed M.
    Damiani, Ernesto
    Ghosh, Uttam
    2022 IEEE 42ND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING SYSTEMS WORKSHOPS (ICDCSW), 2022, : 169 - 174
  • [42] A weight optimized deep learning model for cluster based intrusion detection system
    Godala, Sravanthi
    Kumar, M. Sunil
    OPTICAL AND QUANTUM ELECTRONICS, 2023, 55 (14)
  • [43] Deep Learning-Based Intrusion Detection System for Advanced Metering Infrastructure
    El Mrabet, Zakaria
    Ezzari, Mehdi
    Elghazi, Hassan
    Abou El Majd, Badr
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON NETWORKING, INFORMATION SYSTEMS & SECURITY (NISS19), 2019,
  • [44] Deep Learning-based Embedded Intrusion Detection System for Automotive CAN
    Khandelwal, Shashwat
    Wadhwa, Eashan
    Shreejith, Shanker
    2022 IEEE 33RD INTERNATIONAL CONFERENCE ON APPLICATION-SPECIFIC SYSTEMS, ARCHITECTURES AND PROCESSORS (ASAP), 2022, : 88 - 92
  • [45] Comparative Study of CNN and RNN for Deep Learning Based Intrusion Detection System
    Cui, Jianjing
    Long, Jun
    Min, Erxue
    Liu, Qiang
    Li, Qian
    CLOUD COMPUTING AND SECURITY, PT V, 2018, 11067 : 159 - 170
  • [46] Hardening of the Internet of Things by using an intrusion detection system based on deep learning
    Varastan, Bahman
    Jamali, Shahram
    Fotohi, Reza
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2024, 27 (03): : 2465 - 2488
  • [47] A hybrid deep learning-based intrusion detection system for IoT networks
    Khan, Noor Wali
    Alshehri, Mohammed S.
    Khan, Muazzam A.
    Almakdi, Sultan
    Moradpoor, Naghmeh
    Alazeb, Abdulwahab
    Ullah, Safi
    Naz, Naila
    Ahmad, Jawad
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (08) : 13491 - 13520
  • [48] A deep learning-based intrusion detection system for in-vehicle networks
    Alqahtani, Hamed
    Kumar, Gulshan
    COMPUTERS & ELECTRICAL ENGINEERING, 2022, 104
  • [49] A deep learning-based multi-agent system for intrusion detection
    Louati, Faten
    Ktata, Farah Barika
    SN APPLIED SCIENCES, 2020, 2 (04):
  • [50] HDLNIDS: Hybrid Deep-Learning-Based Network Intrusion Detection System
    Qazi, Emad Ul Haq
    Faheem, Muhammad Hamza
    Zia, Tanveer
    APPLIED SCIENCES-BASEL, 2023, 13 (08):