A Parallel Bidirectional Long Short-Term Memory Model for Energy Disaggregation

被引:4
|
作者
Andrean, Victor [1 ]
Lian, K. L. [1 ]
Iqbal, Ikhwan M. [2 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei 10607, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei 10607, Taiwan
关键词
Hidden Markov models; Load modeling; Data models; Aggregates; Feature extraction; Mathematical models; Power demand; Bidirectional long-short term memory (BLSTM); energy disaggregation; non-intrusive load monitoring (NILM);
D O I
10.1109/ICJECE.2022.3151158
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Non-intrusive load monitoring (NILM) is an elegant solution for monitoring energy consumption. Essentially, it only requires a set of voltage and current sensors to be installed at the electrical entry point for load disaggregation. However, the main challenge of NILM is to accurately analyze the aggregate load data and determine the electrical consumption of each appliance. Recently, there have been some deep learning (DL) techniques proposed for NILM. These include deep convolutional neural networks (DCNNs), gated linear unit and residual network (GLU-Res), bidirectional long short-term memory (BLSTM), and autoencoder (AE). Generally, they can outperform some of the existing NILM models such as factorial hidden Markov model. Nevertheless, some of these DL methods cannot handle well on multi-state appliances, appliances with sparse patterns, and appliances with rapid changing patterns. This article proposes a new NILM model, which involves parallel convolution neural networks and BLSTM layers. Moreover, a feature extractor is proposed to unmask useful statistical features from aggregate signals to improve the learning capability of the network. The benchmark dataset REDD was used for testing the proposed method and the state-of-the-arts such as DCNN, GLU-Res, BLSTM, and AE. The results indicate that the proposed method can successfully outperform those methods.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [31] Short-Term Traffic Flow Forecast Based on Parallel Long Short-Term Memory Neural Network
    Qiao, Songlin
    Sun, Rencheng
    Fan, Guangpeng
    Liu, Ji
    PROCEEDINGS OF 2017 8TH IEEE INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING AND SERVICE SCIENCE (ICSESS 2017), 2017, : 253 - 257
  • [32] Long short-term memory
    Hochreiter, S
    Schmidhuber, J
    NEURAL COMPUTATION, 1997, 9 (08) : 1735 - 1780
  • [33] Fuzzy Clustering and Bidirectional Long Short-Term Memory for Sleep Stages Classification
    Yulita, Intan Nurma
    Fanany, Mohamad Ivan
    Arymurthy, Aniati Murni
    2017 INTERNATIONAL CONFERENCE ON SOFT COMPUTING, INTELLIGENT SYSTEM AND INFORMATION TECHNOLOGY (ICSIIT), 2017, : 11 - 16
  • [34] On extended long short-term memory and dependent bidirectional recurrent neural network
    Su, Yuanhang
    Kuo, C-C Jay
    NEUROCOMPUTING, 2019, 356 : 151 - 161
  • [35] Application of bidirectional long short-term memory network for prediction of cognitive age
    Wong, Shi-Bing
    Tsao, Yu
    Tsai, Wen-Hsin
    Wang, Tzong-Shi
    Wu, Hsin-Chi
    Wang, Syu-Siang
    SCIENTIFIC REPORTS, 2023, 13 (01):
  • [36] Convolutional Bidirectional Long Short-Term Memory for Deception Detection With Acoustic Features
    Xie, Yue
    Liang, Ruiyu
    Tao, Huawei
    Zhu, Yue
    Zhao, Li
    IEEE ACCESS, 2018, 6 : 76527 - 76534
  • [37] Bidirectional Long Short-Term Memory for Sentiment Analysis of Chinese Product Reviews
    Zhang, Kai
    Song, Wei
    Liu, Lizhen
    Zhao, Xinlei
    Du, Chao
    PROCEEDINGS OF 2019 IEEE 9TH INTERNATIONAL CONFERENCE ON ELECTRONICS INFORMATION AND EMERGENCY COMMUNICATION (ICEIEC 2019), 2019, : 665 - 668
  • [38] Reflection Coefficients Inversion Based on the Bidirectional Long Short-Term Memory Network
    Yang, Naxia
    Xiong, Jinliang
    Guo, Chunxiang
    Guo, Shuwen
    Li, Guofa
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [39] Sleep staging by bidirectional long short-term memory convolution neural network
    Chen, Xueyan
    He, Jie
    Wu, Xiaoqiang
    Yan, Wei
    Wei, Wei
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2020, 109 : 188 - 196
  • [40] Hybrid long short-term memory and bidirectional multichannel network cascaded with split convolution for short-term load forecasting
    Hasanat, Syed Muhammad
    Ullah, Irshad
    Aurangzeb, Khursheed
    Rizwan, Muhammad
    Alhussein, Musaed
    Anwar, Muhammad Shahid
    Engineering Applications of Artificial Intelligence, 2025, 147