A Parallel Bidirectional Long Short-Term Memory Model for Energy Disaggregation

被引:4
|
作者
Andrean, Victor [1 ]
Lian, K. L. [1 ]
Iqbal, Ikhwan M. [2 ]
机构
[1] Natl Taiwan Univ Sci & Technol, Dept Elect Engn, Taipei 10607, Taiwan
[2] Natl Taiwan Univ Sci & Technol, Dept Elect & Comp Engn, Taipei 10607, Taiwan
关键词
Hidden Markov models; Load modeling; Data models; Aggregates; Feature extraction; Mathematical models; Power demand; Bidirectional long-short term memory (BLSTM); energy disaggregation; non-intrusive load monitoring (NILM);
D O I
10.1109/ICJECE.2022.3151158
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Non-intrusive load monitoring (NILM) is an elegant solution for monitoring energy consumption. Essentially, it only requires a set of voltage and current sensors to be installed at the electrical entry point for load disaggregation. However, the main challenge of NILM is to accurately analyze the aggregate load data and determine the electrical consumption of each appliance. Recently, there have been some deep learning (DL) techniques proposed for NILM. These include deep convolutional neural networks (DCNNs), gated linear unit and residual network (GLU-Res), bidirectional long short-term memory (BLSTM), and autoencoder (AE). Generally, they can outperform some of the existing NILM models such as factorial hidden Markov model. Nevertheless, some of these DL methods cannot handle well on multi-state appliances, appliances with sparse patterns, and appliances with rapid changing patterns. This article proposes a new NILM model, which involves parallel convolution neural networks and BLSTM layers. Moreover, a feature extractor is proposed to unmask useful statistical features from aggregate signals to improve the learning capability of the network. The benchmark dataset REDD was used for testing the proposed method and the state-of-the-arts such as DCNN, GLU-Res, BLSTM, and AE. The results indicate that the proposed method can successfully outperform those methods.
引用
收藏
页码:150 / 158
页数:9
相关论文
共 50 条
  • [1] Predictive model for real-time energy disaggregation using long short-term memory
    Li, Bingbing
    Wu, Tongzi
    Bian, Shijie
    Sutherland, John W.
    CIRP ANNALS-MANUFACTURING TECHNOLOGY, 2023, 72 (01) : 25 - 28
  • [2] Long Short-Term Memory (LSTM) Neural Networks Applied to Energy Disaggregation
    Tongta, Anawat
    Chooruang, Komkrit
    2020 8TH INTERNATIONAL ELECTRICAL ENGINEERING CONGRESS (IEECON), 2020,
  • [3] Surrogate modelling for urban building energy simulation based on the bidirectional long short-term memory model
    Pan, Xiyu
    Xu, Yujie
    Hong, Tianzhen
    JOURNAL OF BUILDING PERFORMANCE SIMULATION, 2024,
  • [4] Heating and Lighting Load Disaggregation Using Frequency Components and Convolutional Bidirectional Long Short-Term Memory Method
    Zou, Mingzhe
    Zhu, Shuyang
    Gu, Jiacheng
    Korunovic, Lidija M.
    Djokic, Sasa Z.
    ENERGIES, 2021, 14 (16)
  • [5] An Energy-Efficient VNE Algorithm Based on Bidirectional Long Short-Term Memory
    He, Mengyang
    Zhuang, Lei
    Yang, Sijin
    Xu, Zexi
    Li, Wencui
    Lu, Jizhao
    JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2022, 30 (03)
  • [6] An Energy-Efficient VNE Algorithm Based on Bidirectional Long Short-Term Memory
    Mengyang He
    Lei Zhuang
    Sijin Yang
    Zexi Xu
    Wencui Li
    Jizhao Lu
    Journal of Network and Systems Management, 2022, 30
  • [7] CCG supertagging with bidirectional long short-term memory networks
    Kadari, Rekia
    Zhang, Yu
    Zhang, Weinan
    Liu, Ting
    NATURAL LANGUAGE ENGINEERING, 2018, 24 (01) : 77 - 90
  • [8] Bidirectional Long Short-Term Memory Network for Taxonomic Classification
    Soliman, Naglaa F.
    Abd Alhalem, Samia M.
    El-Shafai, Walid
    Abdulrahman, Salah Eldin S. E.
    Ismaiel, N.
    El-Rabaie, El-Sayed M.
    Algarni, Abeer D.
    Algarni, Fatimah
    Abd El-Samie, Fathi E.
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 33 (01): : 103 - 116
  • [9] A text classification method based on a convolutional and bidirectional long short-term memory model
    Huan, Hai
    Guo, Zelin
    Cai, Tingting
    He, Zichen
    CONNECTION SCIENCE, 2022, 34 (01) : 2108 - 2124
  • [10] Personality classification from text using bidirectional long short-term memory model
    Asad Khattak
    Nosheen Jellani
    Muhammad Zubair Asghar
    Usama Asghar
    Multimedia Tools and Applications, 2024, 83 : 28849 - 28873