Hardy and Sobolev inequalities in the half space

被引:0
|
作者
Mizuta, Y. [1 ]
Shimomura, T. [2 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, Higashihiroshima 7398521, Japan
[2] Hiroshima Univ, Grad Sch Educ, Dept Math, Higashihiroshima 7398524, Japan
关键词
Hardy-Sobolev inequality; Herz-Morrey space; HERZ-MORREY SPACES; BOUNDEDNESS; THEOREM;
D O I
10.1007/s10474-019-01004-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Our aim is to establish Hardy and Sobolev inequalities for Sobolev functions in Herz-Morrey spaces, which extend the classical Hardy inequalities in the L-p Lebesgue space.
引用
收藏
页码:230 / 244
页数:15
相关论文
共 50 条
  • [41] Remarks on inequalities of Hardy-Sobolev Type
    Xiao, Ying-Xiong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2011,
  • [42] Reverse Hardy-Littlewood-Sobolev inequalities
    Carrillo, Jose A.
    Delgadino, Matias G.
    Dolbeault, Jean
    Frank, Rupert L.
    Hoffmann, Franca
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 132 : 133 - 165
  • [43] Sharp Hardy and Hardy-Sobolev inequalities with point singularities on the boundary
    Barbatis, G.
    Filippas, S.
    Tertikas, A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 117 : 146 - 184
  • [44] SOBOLEV AND HARDY-LITTLEWOOD-SOBOLEV INEQUALITIES: DUALITY AND FAST DIFFUSION
    Dolbeault, Jean
    MATHEMATICAL RESEARCH LETTERS, 2011, 18 (06) : 1037 - 1050
  • [45] Carleson measures for Hardy-Sobolev spaces in the Siegel upper half-space
    Chalmoukis, N.
    Lamberti, G.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (02)
  • [46] HARDY-SOBOLEV TYPE INTEGRAL SYSTEMS WITH DIRICHLET BOUNDARY CONDITIONS IN A HALF SPACE
    Dai, Wei
    Liu, Zhao
    Lu, Guozhen
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2017, 16 (04) : 1253 - 1264
  • [47] SOBOLEV'S INEQUALITIES FOR HERZ-MORREY-ORLICZ SPACES ON THE HALF SPACE
    Mizuta, Yoshihiro
    Ohno, Takao
    Shimomura, Tetsu
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2018, 21 (02): : 433 - 453
  • [48] Fractional Korn and Hardy-type inequalities for vector fields in half space
    Mengesha, Tadele
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2019, 21 (07)
  • [49] The effect of curvature on the best constant in the Hardy–Sobolev inequalities
    N. Ghoussoub
    F. Robert
    Geometric & Functional Analysis GAFA, 2006, 16 : 1201 - 1245
  • [50] Geometry of Sobolev spaces on regular trees and the hardy inequalities
    Naimark, K
    Solomyak, A
    RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS, 2001, 8 (03) : 322 - 335