HYDRODYNAMIC LIMIT OF THE KINETIC THERMOMECHANICAL CUCKER-SMALE MODEL IN A STRONG LOCAL ALIGNMENT REGIME

被引:8
|
作者
Kang, Moon-Jin [1 ,2 ]
Ha, Seung-Yeal [3 ,4 ]
Kim, Jeongho [5 ]
Shim, Woojoo [3 ]
机构
[1] Sookmyung Womens Univ, Dept Math, Seoul 04310, South Korea
[2] Sookmyung Womens Univ, Res Inst Nat Sci, Seoul 04310, South Korea
[3] Seoul Natl Univ, Dept Math Sci, Seoul 08826, South Korea
[4] Seoul Natl Univ, Res Inst Math, Seoul 08826, South Korea
[5] Seoul Natl Univ, Inst New Media & Commun, Seoul 08826, South Korea
基金
新加坡国家研究基金会;
关键词
Flocking; particles; kinetic formulation; hydrodynamic formulation; Wasserstein metric; SYSTEM; EXISTENCE; DYNAMICS; BEHAVIOR;
D O I
10.3934/cpaa.2020057
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a hydrodynamic limit from the kinetic thermomechanical Cucker-Smale (TCS) model to the hydrodynamic Cucker-Smale (CS) model in a strong local alignment regime. For this, we first provide a global existence of weak solution, and flocking dynamics for classical solution to the kinetic TCS model with local alignment force. Then we consider one-parameter family of well-prepared initial data to the kinetic TCS model in which the temperature tends to common constant value determined by initial datum, as singular parameter E tends to zero. In a strong local alignment regime, the limit model is the hydrodynamic CS model in [8]. To verify this hydrodynamic limit rigorously, we adopt the technique introduced in [5] which combines the relative entropy method together with the 2-Wasserstein metric.
引用
收藏
页码:1233 / 1256
页数:24
相关论文
共 50 条
  • [21] A local sensitivity analysis for the kinetic Cucker-Smale equation with random inputs
    Ha, Seung-Yeal
    Jin, Shi
    Jung, Jinwook
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (08) : 3618 - 3649
  • [22] Robustness of Cucker-Smale flocking model
    Canale, Eduardo
    Dalmao, Federico
    Mordecki, Ernesto
    Souza, Max O.
    IET CONTROL THEORY AND APPLICATIONS, 2015, 9 (03): : 346 - 350
  • [23] HYDRODYNAMIC CUCKER-SMALE MODEL WITH NORMALIZED COMMUNICATION WEIGHTS AND TIME DELAY
    Choi, Young-Pil
    Haskovec, Jan
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2660 - 2685
  • [24] Flocking of the hybrid Cucker-Smale model
    Yan, Jinhua
    Yin, Xiuxia
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (06): : 4016 - 4030
  • [25] Cucker-Smale Model with the Hahn Operator
    Girejko, Ewa
    Malinowska, Agnieszka B.
    Schmeidel, Ewa
    Zdanowicz, Malgorzata
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016), 2017, 1863
  • [26] Flocking of a thermodynamic Cucker-Smale model with local velocity interactions
    Chunyin Jin
    Shuangzhi Li
    Acta Mathematica Scientia, 2024, 44 : 632 - 649
  • [27] CUCKER-SMALE MODEL WITH TIME DELAY
    Rodriguez Cartabia, Mauro
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2022, 42 (05) : 2409 - 2432
  • [28] Flocking of a thermodynamic Cucker-Smale model with local velocity interactions
    Jin, Chunyin
    Li, Shuangzhi
    ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) : 632 - 649
  • [29] LOCAL SENSITIVITY ANALYSIS FOR THE CUCKER-SMALE MODEL WITH RANDOM INPUTS
    Ha, Seung-Yeal
    Jin, Shi
    KINETIC AND RELATED MODELS, 2018, 11 (04) : 859 - 889
  • [30] Pattern formation in the Cucker-Smale model 
    Zhang, Yinglong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 376 : 204 - 234