A nano-silicate material with exceptional capacity for CO2 capture and storage at room temperature

被引:26
|
作者
Cavalcanti, Leide P. [1 ]
Kalantzopoulos, Georgios N. [2 ]
Eckert, Juergen [3 ]
Knudsen, Kenneth D. [1 ,4 ]
Fossum, Jon Otto [4 ]
机构
[1] Inst Energy Technol IFE, Kjeller, Norway
[2] Univ Oslo, Dept Chem, Ctr Mat Sci & Nanotechnol SMN, Oslo, Norway
[3] USF, Tampa, FL USA
[4] Norwegian Univ Sci & Technol NTNU, Trondheim, Norway
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
关键词
CARBON-DIOXIDE; CHARGE HOMOGENEITY; ADSORPTION; MONTMORILLONITE; METHANE;
D O I
10.1038/s41598-018-30283-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In order to mitigate climate change driven by the observed high levels of carbon dioxide (CO2) in the atmosphere, many micro and nano-porous materials are being investigated for CO2 selectivity, capture and storage (CCS) purposes, including zeolites, metal organic frameworks (MOFs), functionalized polymers, activated carbons and nano-silicate clay minerals. Key properties include availability, non-toxicity, low cost, stability, energy of adsorption/desorption, sorbent regeneration, sorption kinetics and CO2 storage capacity. Here, we address the crucial point of the volumetric capture and storage capacity for CO2 in a low cost material which is natural, non-toxic, and stable. We show that the nano-silicate Nickel Fluorohectorite is able to capture 0.79 metric tons of CO2 per m(3) of host material - one of the highest capacities ever achieved - and we compare volumetric and gravimetric capacity of the best CO2 sorbent materials reported to date. Our results suggest that the high capture capacity of this fluorohectorite clay is strongly coupled to the type and valence of the interlayer cation (here Ni2+) and the high charge density, which is almost twice that of montmorillonite, resulting in the highest reported CO2 uptake among clay minerals.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Ultrahigh CO2 adsorption capacity on carbon molecular sieves at room temperature
    Silvestre-Albero, Joaquin
    Wahby, Anass
    Sepulveda-Escribano, Antonio
    Martinez-Escandell, Manuel
    Kaneko, Katsumi
    Rodriguez-Reinoso, Francisco
    CHEMICAL COMMUNICATIONS, 2011, 47 (24) : 6840 - 6842
  • [22] In situ studies of materials for high-temperature CO2 capture and storage
    Dunstan, Matthew T.
    Liu, Wen
    Pavan, Adriano F.
    Maugeri, Serena
    Dove, Martin
    Taiwo, Dami
    Shearing, Paul
    Ling, Chris D.
    Scott, Stuart A.
    Dennis, John S.
    Grey, Clare P.
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2015, 71 : S344 - S344
  • [23] CO2 capture and storage: Possibilities and perspectives
    Lamont-Doherty Earth Observatory, Columbia University, New York, NY, United States
    Elements, 2008, 5 (295-297)
  • [24] CO2 Capture and Geologic Storage: The Possibilities
    Loaiciga, Hugo A.
    GROUND WATER, 2013, 51 (06) : 816 - 821
  • [25] CO2 capture and storage: are we ready?
    Orr, Franklin M., Jr.
    ENERGY & ENVIRONMENTAL SCIENCE, 2009, 2 (05) : 449 - 458
  • [26] CO2 capture and storage - A solution within
    Bennaceur, Kamel
    Gupta, Neeraj
    Monea, Mike
    Ramakrishnan, J.S.
    Randen, Trygve
    Sakurai, Shinichi
    Whittaker, Steve
    Oilfield Review, 2004, 16 (03): : 44 - 61
  • [27] Optimisation economics for CO2 Capture and Storage
    Bukhteeva, Olga
    Neal, Peter
    Allinson, Guy
    GREENHOUSE GAS CONTROL TECHNOLOGIES 9, 2009, 1 (01): : 3969 - 3976
  • [28] CO2 capture and storage: A geopolitical issue
    Hetland, Jens
    INTERNATIONAL CONFERENCE ON APPLIED ENERGY, ICAE2014, 2014, 61 : 1973 - 1976
  • [29] Capture and geological storage of CO2:: An overview
    Rojey, A
    Torp, TA
    OIL & GAS SCIENCE AND TECHNOLOGY-REVUE D IFP ENERGIES NOUVELLES, 2005, 60 (03): : 445 - 448
  • [30] CO2 CAPTURE AND STORAGE : POSSIBILITIES AND PERSPECTIVES
    Broecker, Wallace S.
    ELEMENTS, 2008, 4 (05) : 295 - 297