Near-Pulse Solutions of the FitzHugh-Nagumo Equations on Cylindrical Surfaces

被引:0
|
作者
Talidou, A. [1 ]
Burchard, A. [1 ]
Sigal, I. M. [1 ]
机构
[1] Univ Toronto, Toronto, ON, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
TRAVELING PULSE; STABILITY ANALYSIS; OSCILLATORY TAILS; SPIRAL WAVES; EXISTENCE;
D O I
10.1007/s00332-021-09710-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce a geometrical extension of the FitzHugh-Nagumo equations describing propagation of electrical impulses in nerve axons. In this extension, the axon is modeled as a warped cylinder, rather than a straight line, as is usually done. Nearly planar pulses propagate on its surface, along the cylindrical axis, as is the case with real axons. We prove the stability of electrical impulses for a straight (or standard) cylinder and existence and stability of pulse-like solutions for warped cylinders whose radii are small and vary slowly along their lengths and depend also on the azimuthal angle.
引用
收藏
页数:39
相关论文
共 50 条
  • [31] Invariant algebraic surfaces of the FitzHugh-Nagumo system
    Zhang, Liwei
    Yu, Jiang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 483 (02)
  • [32] BOUNDS FOR WAVE-FRONT SOLUTIONS TO THE FITZHUGH-NAGUMO EQUATIONS.
    Sleeman, B.D.
    Tuma, E.
    Quarterly Journal of Mechanics and Applied Mathematics, 1985, 38 (pt 3): : 439 - 446
  • [33] A RELAXATION WAVE SOLUTION OF THE FITZHUGH-NAGUMO EQUATIONS
    KALACHEV, LV
    JOURNAL OF MATHEMATICAL BIOLOGY, 1993, 31 (02) : 133 - 147
  • [34] PLANAR STANDING WAVEFRONTS IN THE FITZHUGH-NAGUMO EQUATIONS
    Chen, Chao-Nien
    Kung, Shih-Yin
    Morita, Yoshihisa
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2014, 46 (01) : 657 - 690
  • [35] ANALOG CIRCUITRY FOR THE VANDERPOL AND FITZHUGH-NAGUMO EQUATIONS
    KEENER, JP
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1983, 13 (05): : 1010 - 1014
  • [36] Singular limit of FitzHugh-Nagumo equations on a sphere
    Lou, Bendong
    Zhou, Lingjun
    ZAMM-ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 2008, 88 (08): : 644 - 649
  • [37] Existence of wavefronts and impulses to FitzHugh-Nagumo equations
    Gao, WL
    Wang, JH
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 57 (5-6) : 667 - 676
  • [38] On some properties of the coupled Fitzhugh-Nagumo equations
    Lavrova, S. F.
    Kudryashov, N. A.
    Sinelshchikov, D. I.
    VII INTERNATIONAL CONFERENCE PROBLEMS OF MATHEMATICAL PHYSICS AND MATHEMATICAL MODELLING, 2019, 1205
  • [39] FITZHUGH-NAGUMO EQUATIONS WITH GENERALIZED DIFFUSIVE COUPLING
    Cattani, Anna
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2014, 11 (02) : 203 - 215
  • [40] On the exact and numerical solutions to the FitzHugh-Nagumo equation
    Yokus, Asif
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2020, 34 (17):