Non-Oberbeck-Boussinesq zonal flow generation

被引:18
|
作者
Held, M. [1 ]
Wiesenberger, M. [2 ]
Kube, R. [3 ]
Kendl, A. [1 ]
机构
[1] Univ Innsbruck, Inst Ion Phys & Appl Phys, A-6020 Innsbruck, Austria
[2] Tech Univ Denmark, Dept Phys, DK-2800 Lyngby, Denmark
[3] UiT, Dept Phys & Technol, N-9037 Tromso, Norway
基金
奥地利科学基金会;
关键词
zonal flows; poloidal rotation; non-Oberbeck-Boussinesq effects; full-F gyro/drift-fluid theory; Reynolds stress; Favre stress; EDGE TURBULENCE; POLOIDAL FLOW; PLASMA; CONFINEMENT; SUPPRESSION; TRANSPORT; VELOCITY; SHEAR; DRIFT;
D O I
10.1088/1741-4326/aad28e
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Novel mechanisms for zonal flow (ZF) generation for both large relative density fluctuations and background density gradients are presented. In this non-Oberbeck-Boussinesq (NOB) regime ZFs are driven by the Favre stress, the large fluctuation extension of the Reynolds stress, and by background density gradient and radial particle flux dominated terms. Simulations of a nonlinear full-F gyro-fluid model confirm the predicted mechanism for radial ZF propagation and show the significance of the NOB ZF terms for either large relative density fluctuation levels or steep background density gradients.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Investigations of turbulence-radiation interaction in non-Oberbeck-Boussinesq buoyancy-driven flows
    Parmananda, Mukul
    Thirumalaisamy, Ramakrishnan
    Dalal, Amaresh
    Natarajan, Ganesh
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2018, 134 : 298 - 316
  • [22] Non-Oberbeck-Boussinesq effects and sub-critical primary bifurcations in porous media convection
    Sharma, Swapnil
    Balakotaiah, Vemuri
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 193
  • [23] Study of Rayleigh-Benard Convection in Jet-A fuel with non-Oberbeck-Boussinesq effect
    Egambaravel, J.
    Vashist, T. K.
    Mukherjee, Rinku
    INTERNATIONAL JOURNAL OF THERMAL SCIENCES, 2023, 185
  • [24] Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Benard convection in glycerol
    Sugiyama, K.
    Calzavarini, E.
    Grossmann, S.
    Lohse, D.
    EPL, 2007, 80 (03)
  • [25] On non-Oberbeck-Boussinesq effects in Rayleigh-Benard convection of air for large temperature differences
    Wan, Zhen-Hua
    Wang, Qi
    Wang, Ben
    Xia, Shu-Ning
    Zhou, Quan
    Sun, De-Jun
    JOURNAL OF FLUID MECHANICS, 2020, 889 : A101 - A1024
  • [26] Direct numerical simulations of Rayleigh-Benard convection in water with non-Oberbeck-Boussinesq effects
    Demou, Andreas D.
    Grigoriadis, Dimokratis G. E.
    JOURNAL OF FLUID MECHANICS, 2019, 881 : 1073 - 1096
  • [27] On non-Oberbeck-Boussinesq effects in three-dimensional Rayleigh-Benard convection in glycerol
    Horn, Susanne
    Shishkina, Olga
    Wagner, Claus
    JOURNAL OF FLUID MECHANICS, 2013, 724 : 175 - 202
  • [28] Non-Oberbeck-Boussinesq effects in a turbulent tall water-filled differentially heated cavity
    Kizildag, D.
    Rodriguez, I
    Trias, F. X.
    Oliva, A.
    Perez-Segarra, C. D.
    PROCEEDINGS OF THE EIGHTH INTERNATIONAL SYMPOSIUM ON TURBULENCE HEAT AND MASS TRANSFER (THMT-15), 2015, : 367 - 370
  • [29] Non-Oberbeck-Boussinesq effects on the convective stability in a transient natural convection boundary layer for water
    Ke, Junhao
    Armfield, S. W.
    Williamson, N.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2025, 241
  • [30] Non-Oberbeck-Boussinesq effects in two-dimensional Rayleigh-Benard convection of different fluids
    Pan, Xiaomin
    Choi, Jung-Il
    PHYSICS OF FLUIDS, 2023, 35 (09)