SIMPLEST CHAOTIC CIRCUIT

被引:396
|
作者
Muthuswamy, Bharathwaj [1 ]
Chua, Leon O. [2 ]
机构
[1] Milwaukee Sch Engn, Dept Elect Engn, Milwaukee, WI 53202 USA
[2] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
来源
关键词
Memristor; chaotic circuit; local activity; CHUAS CIRCUIT; MEMRISTOR;
D O I
10.1142/S0218127410027076
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A chaotic attractor has been observed with an autonomous circuit that uses only two energy-storage elements: a linear passive inductor and a linear passive capacitor. The other element is a nonlinear active memristor. Hence, the circuit has only three circuit elements in series. We discuss this circuit topology, show several attractors and illustrate local activity via the memristor's DC v(M) - i(M) characteristic.
引用
收藏
页码:1567 / 1580
页数:14
相关论文
共 50 条
  • [41] CONTROLLING AND SYNCHRONIZATION OF CHAOS IN THE SIMPLEST DISSIPATIVE NONAUTONOMOUS CIRCUIT
    MURALI, K
    LAKSHMANAN, M
    CHUA, LO
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1995, 5 (02): : 563 - 571
  • [42] Influence of the boundary on chaotic advection in the simplest model of a topographic vortex
    Kozlov, VF
    Koshel, KV
    Stepanov, DV
    IZVESTIYA ATMOSPHERIC AND OCEANIC PHYSICS, 2005, 41 (02) : 217 - 227
  • [43] The simplest non-trivial model of chaotic causal dynamics
    2001, Jagellonian University (32):
  • [44] On chaotic circuit and ordered space
    Fang Luping
    Zhang Hong
    Yang Jiangang
    Tong Qinye
    CHINESE JOURNAL OF ELECTRONICS, 2008, 17 (01): : 24 - 28
  • [45] A feedback chaotic circuit design
    Wey, TA
    Ogborn, LL
    ISCAS 96: 1996 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS - CIRCUITS AND SYSTEMS CONNECTING THE WORLD, VOL 3, 1996, : 32 - 35
  • [46] On chaotic circuit and ordered space
    College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
    不详
    不详
    不详
    不详
    Chin J Electron, 2008, 1 (24-28):
  • [47] A new class of chaotic circuit
    Sprott, J.C.
    Physics Letters, Section A: General, Atomic and Solid State Physics, 2000, 266 (01): : 19 - 23
  • [48] A new class of chaotic circuit
    Sprott, JC
    PHYSICS LETTERS A, 2000, 266 (01) : 19 - 23
  • [49] Exactly Solvable Chaotic Circuit
    Corron, Ned J.
    Stahl, Mark T.
    Blakely, Jonathan N.
    2010 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1356 - 1359
  • [50] A Chaotic Circuit with Ferroelectric Nonlinearity
    Luigi Fortuna
    Mattia Frasca
    Salvatore Graziani
    Salvatore Reddiconto
    Nonlinear Dynamics, 2006, 44 : 55 - 61