Improving Thompson's Conjecture for Suzuki Groups

被引:2
|
作者
Akhlaghi, Zeinab [1 ]
Khatami, Maryam [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, Iran
[2] Univ Isfahan, Dept Math, Esfahan, Iran
关键词
Conjugacy classes; Suzuki groups; Thompson's conjecture; CONJUGACY CLASS SIZES;
D O I
10.1080/00927872.2015.1065871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and cs(G) be the set of conjugacy class sizes of G. In 1987, J. G. Thompson conjectured that, if G is a finite group with Z(G)=1 and M is a nonabelian simple group satisfying that cs(G)=cs(M), then GM. This conjecture has been proved for Suzuki groups in [5]. In this article, we improve this result by proving that, if G is a finite group such that cs(G)=cs(Sz(q)), for q=2(2m+1), then GSz(q)xA, where A is abelian. We avoid using classification of finite simple groups in our proofs.
引用
收藏
页码:3927 / 3932
页数:6
相关论文
共 50 条
  • [41] Pythagorean representations of Thompson's groups
    Brothier, Arnaud
    Jones, Vaughan F. R.
    JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (07) : 2442 - 2469
  • [42] Conjugator length in Thompson's groups
    Belk, James
    Matucci, Francesco
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (02) : 793 - 810
  • [43] Geometric presentations for Thompson's groups
    Dehornoy, P
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2005, 203 (1-3) : 1 - 44
  • [44] ON THOMPSON'S CONJECTURE FOR Aut(J(2)) AND Aut(McL)
    Chen, Yanheng
    Feng, Yuming
    Chen, Guiyun
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2014, (32): : 223 - 234
  • [45] A proof of the Thompson moonshine conjecture
    Michael J. Griffin
    Michael H. Mertens
    Research in the Mathematical Sciences, 3
  • [46] The conjecture of Novikov and the Thompson group
    Oikonomides, Catherine
    Sergiescu, Vlad
    EXPOSITIONES MATHEMATICAE, 2013, 31 (01) : 1 - 39
  • [47] FEIT-THOMPSON CONJECTURE
    STEPHENS, NM
    MATHEMATICS OF COMPUTATION, 1971, 25 (115) : 625 - &
  • [48] A proof of the Thompson moonshine conjecture
    Griffin, Michael J.
    Mertens, Michael H.
    RESEARCH IN THE MATHEMATICAL SCIENCES, 2016, 3
  • [49] About a conjecture of Guralnick and Thompson
    Frohardt, D
    Magaard, K
    GROUPS, DIFFERENCE SETS, AND THE MONSTER, 1996, 4 : 43 - 54
  • [50] Alperin's conjecture for algebraic groups
    Roehrle, Gerhard
    Rouquier, Raphael
    QUARTERLY JOURNAL OF MATHEMATICS, 2008, 59 : 375 - 378