Improving Thompson's Conjecture for Suzuki Groups

被引:2
|
作者
Akhlaghi, Zeinab [1 ]
Khatami, Maryam [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Fac Math & Comp Sci, Tehran 15914, Iran
[2] Univ Isfahan, Dept Math, Esfahan, Iran
关键词
Conjugacy classes; Suzuki groups; Thompson's conjecture; CONJUGACY CLASS SIZES;
D O I
10.1080/00927872.2015.1065871
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a finite group and cs(G) be the set of conjugacy class sizes of G. In 1987, J. G. Thompson conjectured that, if G is a finite group with Z(G)=1 and M is a nonabelian simple group satisfying that cs(G)=cs(M), then GM. This conjecture has been proved for Suzuki groups in [5]. In this article, we improve this result by proving that, if G is a finite group such that cs(G)=cs(Sz(q)), for q=2(2m+1), then GSz(q)xA, where A is abelian. We avoid using classification of finite simple groups in our proofs.
引用
收藏
页码:3927 / 3932
页数:6
相关论文
共 50 条