Permutation invariant polynomial neural network approach to fitting potential energy surfaces. IV. Coupled diabatic potential energy matrices

被引:71
|
作者
Xie, Changjian [1 ]
Zhu, Xiaolei [2 ,3 ]
Yarkony, David R. [2 ]
Guo, Hua [1 ]
机构
[1] Univ New Mexico, Dept Chem & Chem Biol, Albuquerque, NM 87131 USA
[2] Johns Hopkins Univ, Dept Chem, Charles & 34Th St, Baltimore, MD 21218 USA
[3] Stanford Univ, Dept Chem, Stanford, CA 94305 USA
来源
JOURNAL OF CHEMICAL PHYSICS | 2018年 / 149卷 / 14期
关键词
CHEMICAL-REACTION DYNAMICS; CONICAL INTERSECTIONS; QUANTUM DYNAMICS; NONADIABATIC DYNAMICS; DERIVATIVE COUPLINGS; GEOMETRIC PHASE; BIMOLECULAR REACTIONS; MOLECULAR-SYSTEMS; NUCLEAR-DYNAMICS; PHOTODISSOCIATION;
D O I
10.1063/1.5054310
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A machine learning method is proposed for representing the elements of diabatic potential energy matrices (PEMs) with high fidelity. This is an extension of the so-called permutation invariant polynomial-neural network (PIP-NN) method for representing adiabatic potential energy surfaces. While for one-dimensional irreducible representations the diagonal elements of a diabatic PEM are invariant under exchange of identical nuclei in a molecular system, the off-diagonal elements require special symmetry consideration, particularly in the presence of a conical intersection. A multiplicative factor is introduced to take into consideration the particular symmetry properties while maintaining the PIP-NN framework. We demonstrate here that the extended PIP-NN approach is accurate in representing diabatic PEMs, as evidenced by small fitting errors and by the reproduction of absorption spectra and product branching ratios in both H2O((X) over tilde/(B) over tilde) and NH3((X) over tilde/(A) over tilde) non-adiabatic photodissociation. Published by AIP Publishing.
引用
收藏
页数:9
相关论文
共 50 条