Physics-Informed Deep Learning for Accurate Material Density Map Generation Using MRI and DECT

被引:0
|
作者
Chang, C. [1 ]
Marants, R. [2 ]
Gao, Y. [1 ]
Goette, M. [3 ]
Scholey, J. [4 ]
Bradley, J. [5 ]
Liu, T. [1 ]
Zhou, J. [1 ]
Sudhyadhom, A. [2 ,6 ,7 ]
Yang, X. [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Emory Healthcare, Atlanta, GA USA
[4] Univ Calif San Francisco, San Francisco, CA 94143 USA
[5] Emory Univ, Sch Med, Atlanta, GA USA
[6] Dana Farber Canc Inst, Boston, MA 02115 USA
[7] Harvard Med Sch, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
WE-C930-Ie
引用
收藏
页码:E499 / E499
页数:1
相关论文
共 50 条
  • [41] A deep learning method for multi-material diffusion problems based on physics-informed neural networks
    Yao, Yanzhong
    Guo, Jiawei
    Gu, Tongxiang
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2023, 417
  • [42] Physics-Informed Deep Learning Inversion with Application to Noisy Magnetotelluric Measurements
    Liu, Wei
    Wang, He
    Xi, Zhenzhu
    Wang, Liang
    REMOTE SENSING, 2024, 16 (01)
  • [43] A physics-informed deep learning closure for Lagrangian velocity gradient evolution
    Liu, Bo
    Wan, Zhen-Hua
    Lu, Xi-Yun
    Liu, Luo-Qin
    PHYSICS OF FLUIDS, 2023, 35 (11)
  • [44] Phase Retrieval for Fourier THz Imaging with Physics-Informed Deep Learning
    Xiang, Mingjun
    Wang, Lingxiao
    Yuan, Hui
    Zhou, Kai
    Roskos, Hartmut G.
    2022 47TH INTERNATIONAL CONFERENCE ON INFRARED, MILLIMETER AND TERAHERTZ WAVES (IRMMW-THZ 2022), 2022,
  • [45] Physics-informed deep learning model in wind turbine response prediction
    Li, Xuan
    Zhang, Wei
    RENEWABLE ENERGY, 2022, 185 : 932 - 944
  • [46] Unsupervised physics-informed deep learning for assessing pulmonary artery hemodynamics
    Liu, Xiujian
    Xie, Baihong
    Zhang, Dong
    Zhang, Heye
    Gao, Zhifan
    de Albuquerque, Victor Hugo C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 257
  • [47] Phase-field modeling of fracture with physics-informed deep learning
    Manav, M.
    Molinaro, R.
    Mishra, S.
    De Lorenzis, L.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2024, 429
  • [48] Physics-Informed deep learning to predict flow fields in cyclone separators
    Queiroz, L. H.
    Santos, F. P.
    Oliveira, J. P.
    Souza, M. B.
    DIGITAL CHEMICAL ENGINEERING, 2021, 1
  • [49] A PHYSICS-INFORMED DEEP LEARNING APPROACH FOR HDGT COMPRESSOR PERFORMANCE SIMULATION
    Wei, Manman
    Jiang, Xiaomo
    Liu, Yiyang
    Ge, Xin
    PROCEEDINGS OF ASME TURBO EXPO 2024: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, GT2024, VOL 12D, 2024,
  • [50] Physics-informed deep-learning applications to experimental fluid mechanics
    Eivazi, Hamidreza
    Wang, Yuning
    Vinuesa, Ricardo
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2024, 35 (07)