Physics-Informed Deep Learning for Accurate Material Density Map Generation Using MRI and DECT

被引:0
|
作者
Chang, C. [1 ]
Marants, R. [2 ]
Gao, Y. [1 ]
Goette, M. [3 ]
Scholey, J. [4 ]
Bradley, J. [5 ]
Liu, T. [1 ]
Zhou, J. [1 ]
Sudhyadhom, A. [2 ,6 ,7 ]
Yang, X. [1 ]
机构
[1] Emory Univ, Atlanta, GA 30322 USA
[2] Brigham & Womens Hosp, 75 Francis St, Boston, MA 02115 USA
[3] Emory Healthcare, Atlanta, GA USA
[4] Univ Calif San Francisco, San Francisco, CA 94143 USA
[5] Emory Univ, Sch Med, Atlanta, GA USA
[6] Dana Farber Canc Inst, Boston, MA 02115 USA
[7] Harvard Med Sch, Boston, MA 02115 USA
关键词
D O I
暂无
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
WE-C930-Ie
引用
收藏
页码:E499 / E499
页数:1
相关论文
共 50 条
  • [1] DECT-Based Material Mass Density Mapping for Proton Monte Carlo Dose Calculation Using Physics-Informed Deep Learning
    Chang, C.
    Gao, Y.
    Wang, T.
    Lei, Y.
    Wang, Q.
    Bradley, J.
    Liu, T.
    Lin, L.
    Zhou, J.
    Yang, X.
    MEDICAL PHYSICS, 2022, 49 (06) : E526 - E527
  • [2] PHYSICS-INFORMED MULTITASK LEARNING FOR MATERIAL DEVELOPMENT
    Wu, Yulun
    Li, Yumeng
    PROCEEDINGS OF ASME 2023 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2023, 2023,
  • [3] A physics-informed deep learning framework for dynamic susceptibility contrast perfusion MRI
    Rotkopf, Lukas T.
    Ziener, Christian H.
    von Knebel-Doeberitz, Nikolaus
    Wolf, Sabine D.
    Hohmann, Anja
    Wick, Wolfgang
    Bendszus, Martin
    Schlemmer, Heinz-Peter
    Paech, Daniel
    Kurz, Felix T.
    MEDICAL PHYSICS, 2024, : 9031 - 9040
  • [4] Physics-informed deep learning for digital materials
    Zhang, Zhizhou
    Gu, Grace X.
    THEORETICAL AND APPLIED MECHANICS LETTERS, 2021, 11 (01)
  • [5] Physics-informed deep learning for digital materials
    Zhizhou Zhang
    Grace X Gu
    Theoretical & Applied Mechanics Letters, 2021, 11 (01) : 52 - 57
  • [6] Constitutive model characterization and discovery using physics-informed deep learning
    Haghighat, Ehsan
    Abouali, Sahar
    Vaziri, Reza
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 120
  • [7] Physics-informed deep learning cascade loss model
    Feng, Yunyang
    Song, Xizhen
    Yuan, Wei
    Lu, Hanan
    AEROSPACE SCIENCE AND TECHNOLOGY, 2023, 134
  • [8] Physics-Informed Deep Learning for Tool Wear Monitoring
    Zhu, Kunpeng
    Guo, Hao
    Li, Si
    Lin, Xin
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2024, 20 (01) : 524 - 533
  • [9] Physics-informed deep learning for fringe pattern analysis
    Wei Yin
    Yuxuan Che
    Xinsheng Li
    Mingyu Li
    Yan Hu
    Shijie Feng
    Edmund Y.Lam
    Qian Chen
    Chao Zuo
    Opto-Electronic Advances, 2024, 7 (01) : 7 - 19
  • [10] Emergent physics-informed design of deep learning for microscopy
    Wijesinghe, Philip
    Dholakia, Kishan
    JOURNAL OF PHYSICS-PHOTONICS, 2021, 3 (02):