The spacetime singularity resolution of Schwarichild-de Sitter black hole in loop quantum gravity

被引:0
|
作者
Liu Cheng-Zhou [1 ,2 ]
Yu Guo-Xiang [1 ]
Xie Zhi-Kun [1 ]
机构
[1] Shaoxing Univ, Dept Phys & Elect Informat, Shaoxing 312000, Peoples R China
[2] Binzhou Coll, Inst Theoret Phys, Binzhou 256600, Peoples R China
基金
中国国家自然科学基金;
关键词
spacetime singularity; black hole; loop quantum gravity; HAWKING RADIATION; ENTROPY; VOLUME; FIELD;
D O I
10.7498/aps.59.1487
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using the analog variable of the holonomy variable of loop quantum gravity and the corresponding quantization method, the gravity field near the center of the Schwarichild de Sitter black hole is processed though quantization. The spectrums of 1/r and the curvature invariant are computed near the black hole center and the result that the both spectrums is bounded from above are obtained. Following the above quantization method and by computing the quantum Hamiltonian constraint equation of the gravity field near the classical singularity r = 0, the evolution formula of the black hole wave function is obtained and the result that the wave function can evolve though the classical singularity is obtained.
引用
收藏
页码:1487 / 1493
页数:7
相关论文
共 39 条
  • [1] [Anonymous], 2001, ARXIVGRQC0110034
  • [2] Quantum geometry and the Schwarzschild singularity
    Ashtekar, A
    Bojowald, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (02) : 391 - 411
  • [3] Black hole evaporation: a paradigm
    Ashtekar, A
    Bojowald, M
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2005, 22 (16) : 3349 - 3362
  • [4] Background independent quantum giravity: a status report
    Ashtekar, A
    Lewandowski, J
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2004, 21 (15) : R53 - R152
  • [5] Quantum geometry and black hole entropy
    Ashtekar, A
    Baez, J
    Corichi, A
    Krasnov, K
    [J]. PHYSICAL REVIEW LETTERS, 1998, 80 (05) : 904 - 907
  • [6] ASHTEKAR A, 2008, ARXIVGRQC08011811
  • [7] ASHTEKAR A, 2008, ARXIVGRQC08124703
  • [8] Ashtekar A, 2003, ADV THEOR MATH PHYS, V7, P233
  • [9] BLACK HOLES AND ENTROPY
    BEKENSTEIN, JD
    [J]. PHYSICAL REVIEW D, 1973, 7 (08) : 2333 - 2346
  • [10] BIANCHI E, 2008, ARXIVGRQC08064710