Quantum geometry and the Schwarzschild singularity

被引:262
|
作者
Ashtekar, A [1 ]
Bojowald, M
机构
[1] Penn State Univ, Dept Phys, Inst Gravitat Phys & Geometry, University Pk, PA 16802 USA
[2] Max Planck Inst Gravitat Phys, D-14476 Potsdam, Germany
[3] Issac Newton Inst Math Sci, Cambridge CB3 0EH, England
关键词
D O I
10.1088/0264-9381/23/2/008
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
In homogeneous cosmologies, quantum geometry effects lead to a resolution of the classical singularity without having to invoke special boundary conditions at the singularity or introduce ad hoc elements such as unphysical matter. The same effects are shown to lead to a resolution of the Schwarzschild singularity. The resulting quantum extension of spacetime is likely to have significant implications for the black hole evaporation process. Similarities and differences with the situation in quantum geometrodynamics are pointed out.
引用
收藏
页码:391 / 411
页数:21
相关论文
共 50 条
  • [1] Resolving the Schwarzschild singularity in both classic and quantum gravity
    Zeng, Ding-fang
    [J]. NUCLEAR PHYSICS B, 2017, 917 : 178 - 192
  • [2] Ascribing quantum system to Schwarzschild spacetime with naked singularity
    Gozdz, Andrzej
    Pedrak, Aleksandra
    Piechocki, Wlodzimierz
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2022, 39 (14)
  • [3] SCHWARZSCHILD SINGULARITY
    BEL, L
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (08) : 1501 - &
  • [4] QUANTUM IMPLICATIONS FOR FREQUENCY MEASUREMENTS IN SCHWARZSCHILD GEOMETRY
    NEUTZE, R
    MOREAU, W
    [J]. PHYSICS LETTERS A, 1993, 183 (2-3) : 141 - 144
  • [5] Effective loop quantum geometry of Schwarzschild interior
    Cortez, Jeronimo
    Cuervo, William
    Morales-Tecotl, Hugo A.
    Ruelas, Juan C.
    [J]. PHYSICAL REVIEW D, 2017, 95 (06)
  • [6] PERSPECTIVES ON SCHWARZSCHILD SINGULARITY
    COOPERST.FI
    JUNEVICU.GJ
    [J]. NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS, 1973, B 16 (02): : 387 - 397
  • [7] REALITY OF SCHWARZSCHILD SINGULARITY
    JANIS, AI
    NEWMAN, ET
    WINICOUR, J
    [J]. PHYSICAL REVIEW LETTERS, 1968, 20 (16) : 878 - &
  • [8] STABILITY OF A SCHWARZSCHILD SINGULARITY
    REGGE, T
    WHEELER, JA
    [J]. PHYSICAL REVIEW, 1957, 108 (04): : 1063 - 1069
  • [9] Phenomenological loop quantum geometry of the Schwarzschild black hole
    Chiou, Dah-Wei
    [J]. PHYSICAL REVIEW D, 2008, 78 (06):
  • [10] General relativity and the schwarzschild singularity
    S. S. Gershtein
    A. A. Logunov
    M. A. Mestvirishvili
    [J]. Physics of Particles and Nuclei, 2008, 39 : 1 - 12