A CO2 laser heating system for in situ high pressure-temperature experiments at HPCAT

被引:16
|
作者
Smith, Dean [1 ,2 ]
Smith, Jesse S. [3 ]
Childs, Christian [1 ,2 ]
Rod, Eric [3 ]
Hrubiak, Rostislav [3 ]
Shen, Guoyin [3 ]
Salamat, Ashkan [1 ,2 ]
机构
[1] Univ Nevada, Dept Phys & Astron, Las Vegas, NV 89154 USA
[2] Univ Nevada, HiPSEC, Las Vegas, NV 89154 USA
[3] Carnegie Inst Sci, Geophys Lab, High Pressure Collaborat Access Team, Argonne, IL 60439 USA
来源
REVIEW OF SCIENTIFIC INSTRUMENTS | 2018年 / 89卷 / 08期
关键词
DIAMOND-ANVIL CELL; X-RAY-DIFFRACTION; EQUATION-OF-STATE; LOWER MANTLE; EXTREME CONDITIONS; MGSIO3; PEROVSKITE; CORE MATERIALS; SPECTROSCOPY; POLYMORPHS; TRANSITION;
D O I
10.1063/1.5040508
中图分类号
TH7 [仪器、仪表];
学科分类号
0804 ; 080401 ; 081102 ;
摘要
We present a CO2 laser heating setup for synchrotron x-ray diffraction inside a diamond anvil cell, situated at HPCAT (Sector 16, Advanced Photon Source, Argonne National Lab, Illinois, USA), which is modular and portable between the HPCAT experiment hutches. The system allows direct laser heating of wide bandgap insulating materials to thousands of degrees at static high pressures up to the Mbar regime. Alignment of the focused CO2 laser spot is performed using a mid-infrared microscope, which addressed past difficulties with aligning the invisible radiation. The implementation of the mid-infrared microscope alongside a mirror pinhole spatial filter system allows precise alignment of the heating laser spot and optical pyrometry measurement location to the x-ray probe. A comparatively large heating spot (similar to 50 mu m) relative to the x-ray beam (<10 mu m) reduces the risk of temperature gradients across the probed area. Each component of the heating system and its diagnostics have been designed with portability in mind and compatibility with the various experimental hutches at the HPCAT beamlines. We present measurements on ZrO2 at 5.5 GPa which demonstrate the improved room-temperature diffraction data quality afforded by annealing with the CO2 laser. We also present in situ measurements at 5.5 GPa up to 2800 K in which we do not observe the postulated fluorite ZrO2 structure, in agreement with recent findings. Published by AIP Publishing.
引用
收藏
页数:6
相关论文
共 50 条
  • [21] Experimental CO2 absorption coefficients at high pressure and high temperature
    Stefani, Stefania
    Piccioni, Giuseppe
    Snels, Marcel
    Grassi, Davide
    Adriani, Alberto
    JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2013, 117 : 21 - 28
  • [22] The stability study of CO2 foams at high pressure and high temperature
    Wang, Yanqing
    Zhang, Yang
    Liu, Yanmin
    Zhang, Liang
    Ren, Shaoran
    Lu, Jun
    Wang, Xiaohui
    Fan, Na
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2017, 154 : 234 - 243
  • [23] CO2 laser heating instrumentation at CHESS
    Brister, Keith
    Bassett, William
    Review of Scientific Instruments, 1995, 66 (2 pt 2):
  • [24] A Pratical In-Situ CO2 Laser Drilling System for Plasters
    Zhao, Xuemin
    Wang, Xiaodong
    Wang, Shenglie
    Yuan, Xiao
    ADVANCED DESIGN AND MANUFACTURE TO GAIN A COMPETITIVE EDGE: NEW MANUFACTURING TECHNIQUES AND THEIR ROLE IN IMPROVING ENTERPRISE PERFORMANCE, 2008, : 815 - 821
  • [25] Experiments for the reforming of CH4 with CO2 at high temperature
    Wang, Fang
    Gui, Keting
    Dongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Southeast University (Natural Science Edition), 2008, 38 (01): : 106 - 109
  • [26] Modeling viscosity of CO2 at high temperature and pressure conditions
    Amar, Menad Nait
    Ghriga, Mohammed Abdelfetah
    Ouaer, Hocine
    Ben Seghier, Mohamed El Amine
    Binh Thai Pham
    Andersen, Pal Ostebo
    JOURNAL OF NATURAL GAS SCIENCE AND ENGINEERING, 2020, 77
  • [27] High temperature measurements of AlON using a CO2 laser
    Arends, A.
    Jang, W-Y.
    Park, J.
    Schueler, R.
    Rosenbury, C. A.
    Urbas, A.
    OPTICAL MANUFACTURING AND TESTING XII, 2018, 10742
  • [28] Temporal response of surface-relief fiber Bragg gratings to high temperature CO2 laser heating
    Lowder, Tyson L.
    Newman, Jason A.
    Kunzler, Wesley M.
    Young, Jonathan D.
    Selfridge, Richard H.
    Schultz, Stephen M.
    APPLIED OPTICS, 2008, 47 (20) : 3568 - 3573
  • [29] In situ studies of materials for high temperature CO2 capture and storage
    Dunstan, Matthew T.
    Maugeri, Serena A.
    Liu, Wen
    Tucker, Matthew G.
    Taiwo, Oluwadamilola O.
    Gonzalez, Belen
    Allan, Phoebe K.
    Gaultois, Michael W.
    Shearing, Paul R.
    Keen, David A.
    Phillips, Anthony E.
    Dove, Martin T.
    Scott, Stuart A.
    Dennis, John S.
    Grey, Clare P.
    FARADAY DISCUSSIONS, 2016, 192 : 217 - 240
  • [30] EXPERIMENTS ON PLASMA HEATING BY CO2 LASER RADIATION IN THE TIR-1 FACILITY.
    Akimov, A.E.
    Baranov, V.Yu.
    Boiko, V.A.
    Borzendo, V.L.
    Bryunetkin, B.A.
    Kozochkin, S.M.
    Makarov, K.N.
    Malyuta, D.D.
    Pis'mennyl, V.D.
    Satov, Yu.A.
    Skobelev, I.Yu.
    Sobolev, S.S.
    Strel'tsov, A.P.
    Faenov, A.Ya.
    Soviet journal of quantum electronics, 1983, 13 (08): : 1008 - 1011