local cohomology modules;
Matlis dual functor;
filter regular sequences;
D O I:
10.1007/s00013-006-1115-1
中图分类号:
O1 [数学];
学科分类号:
0701 ;
070101 ;
摘要:
Let (R, m) be a commutative Noetherian local ring with non-zero identity, a an ideal of R and M a finitely generated R-module with aM not equal M. Let D(-) := Hom(R)(-, E) be the Matlis dual functor, where E := E(R/m) is the injective hull of the residue field R/m. We show that, for a positive integer n, if there exists a regular sequence x(1),...,x(n) is an element of a and the i-th local cohomology module H-a(i)( M) of M with respect to a is zero for all i with i > n then H-a(n) (D(H-a(n)( M))) = E.
机构:
Univ Sheffield, Dept Pure Math, Hicks Bldg, Sheffield S3 7RH, S Yorkshire, EnglandUniv Sheffield, Dept Pure Math, Hicks Bldg, Sheffield S3 7RH, S Yorkshire, England
Katzman, Mordechai
Zhang, Wenliang
论文数: 0引用数: 0
h-index: 0
机构:
Univ Illinois, Dept Math Stat & Comp Sci, 851 S Morgan St, Chicago, IL 60607 USAUniv Sheffield, Dept Pure Math, Hicks Bldg, Sheffield S3 7RH, S Yorkshire, England