We consider the mean-variance hedging of a defaultable claim in a general stochastic volatility model. By introducing a new measure Q(0), we derive the martingale representation theorem with respect to the investors' filtration G. We present an explicit form of the optimal-variance martingale measure by means of a stochastic Riccati equation (SRE). For a general contingent claim, we represent the optimal strategy and the optimal cost of the mean-variance hedging by means of another backward stochastic differential equation (BSDE). For the defaultable option, especially when there exists a random recovery rate we give an explicit form of the solution of the BSDE.
机构:
Chuo Univ, Dept Ind & Syst Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, JapanChuo Univ, Dept Ind & Syst Engn, Bunkyo Ku, 1-13-27 Kasuga, Tokyo 1128551, Japan
机构:
Univ Paris 07, CNRS, Lab Probabilit & Modeles Aleatoires, UMR 7599, F-75221 Paris 05, FranceUniv Paris 07, CNRS, Lab Probabilit & Modeles Aleatoires, UMR 7599, F-75221 Paris 05, France
Choukroun, Sebastien
Goutte, Stephane
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 08, LED, Dionysian Econ Lab, F-93526 St Denis, France
PSB Paris Sch Business, Paris, FranceUniv Paris 07, CNRS, Lab Probabilit & Modeles Aleatoires, UMR 7599, F-75221 Paris 05, France
Goutte, Stephane
Ngoupeyou, Armand
论文数: 0引用数: 0
h-index: 0
机构:
BEAC, Yaounde, CameroonUniv Paris 07, CNRS, Lab Probabilit & Modeles Aleatoires, UMR 7599, F-75221 Paris 05, France