A NEW AUTOMATED STRETCHING FINITE ELEMENT METHOD FOR 2D CRACK PROPAGATION

被引:1
|
作者
Bentahar, Mohammed [1 ]
Benzaama, Habib [1 ]
Bentoumi, Mohamed [2 ]
Mokhtari, Mohamed [1 ]
机构
[1] Ecole Natl Polytech, Mech Engn Dept, Lab Appl Biomech & Biomat, ENPO, Oran, Algeria
[2] Ferhat Abbas Univ, Inst Opt & Precis Mech, Setif, Algeria
基金
中国国家自然科学基金;
关键词
2D crack propagation; FEM; stretching finite element method (SFEM); stress intensity factor (SIF); GROWTH; SIMULATION;
D O I
10.15632/jtam-pl.55.3.869
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
This work presents a study of crack propagation with a new 2D finite element method with the stretching of the mesh. This method affects at each propagation step new coordinates of each element node of the mesh. The structure is divided to areas and each area has its own coordinate formulas. A program in FORTRAN allows us to create a parametric mesh, which keeps the same number of nodes and elements during different steps of crack propagation. The nodes are stretched using the criterion of maximum circumferential stress (MCS). The fracture parameters such as stress intensity factors in modes I and II and the orientation angles are calculated by solving the problem by the finite element code ABAQUS.
引用
收藏
页码:869 / 881
页数:13
相关论文
共 50 条
  • [31] A new multiscale finite element method for the 2D transient Navier-Stokes equations
    Wen, Juan
    He, Yinnian
    [J]. INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2019, 96 (07) : 1377 - 1397
  • [32] A Hybrid Finite Element-Scaled Boundary Finite Element Method for Multiple Cohesive Crack Propagation
    Ooi, E. T.
    Yang, Z. J.
    [J]. PROCEEDINGS OF THE TENTH INTERNATIONAL CONFERENCE ON COMPUTATIONAL STRUCTURES TECHNOLOGY, 2010, 93
  • [33] An Adaptive Extended Finite Element Based Crack Propagation Analysis Method
    Xie, Guizhong
    Zhao, Chongmao
    Zhong, Yudong
    Li, Hao
    Liu, Jun
    Du, Wenliao
    Lv, Jiahe
    Wu, Chao
    [J]. MECHANIKA, 2024, 30 (01): : 74 - 82
  • [34] A contact algorithm for frictional crack propagation with the extended finite element method
    Liu, Fushen
    Borja, Ronaldo I.
    [J]. INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2008, 76 (10) : 1489 - 1512
  • [35] A polygonal finite element method for modeling crack propagation with minimum remeshing
    A. R. Khoei
    R. Yasbolaghi
    S. O. R. Biabanaki
    [J]. International Journal of Fracture, 2015, 194 : 123 - 148
  • [36] Simulation of the concrete crack propagation process with the extended finite element method
    [J]. Zhang, X.-D. (zhangxiaodong00@tsinghua.org.cn), 1600, Tsinghua University (30):
  • [37] A polygonal finite element method for modeling crack propagation with minimum remeshing
    Khoei, A. R.
    Yasbolaghi, R.
    Biabanaki, S. O. R.
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2015, 194 (02) : 123 - 148
  • [38] An adaptive finite element method for crack propagation based on a multifunctional super singular element
    Wang, Congman
    Ping, Xuecheng
    Wang, Xingxing
    [J]. INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2023, 247
  • [39] The coupling of natural boundary element and finite element method for 2D hyperbolic equations
    Yu, DH
    Du, QK
    [J]. JOURNAL OF COMPUTATIONAL MATHEMATICS, 2003, 21 (05) : 585 - 594
  • [40] Parallel finite element method for 2D free surface seepage
    Dept. of Computer Science and Engineering, Zhejiang University, Hangzhou 310027, China
    不详
    [J]. Shuili Fadian Xuebao, 2006, 3 (116-120):