Feedback stabilization and Lyapunov functions

被引:110
|
作者
Clarke, FH
Ledyaev, YS
Rifford, L
Stern, RJ
机构
[1] Univ Lyon 1, Inst Girard Desargues, F-69622 Villeurbanne, France
[2] VA Steklov Math Inst, Moscow 117966, Russia
[3] Concordia Univ, Dept Math & Stat, Montreal, PQ H4B 1R6, Canada
关键词
asymptotic stabilizability; discontinuous feedback law; system sampling; locally Lipschitz Lyapunov function; nonsmooth analysis; robustness;
D O I
10.1137/S0363012999352297
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Given a locally defined, nondifferentiable but Lipschitz Lyapunov function, we employ it in order to construct a ( discontinuous) feedback law which stabilizes the underlying system to any given tolerance. A converse result shows that suitable Lyapunov functions of this type exist under mild assumptions. We also establish that the feedback in question possesses a robustness property relative to measurement error, despite the fact that it may not be continuous.
引用
收藏
页码:25 / 48
页数:24
相关论文
共 50 条