Lyapunov functions and discontinuous stabilizing feedback

被引:30
|
作者
Clarke, Francis [1 ]
机构
[1] Univ Lyon, Inst Camille Jordan, F-69622 Villeurbanne, France
关键词
Controllability; Discontinuous control; Feedback; Nonlinear theory; Stabilization; CONTROLLABILITY;
D O I
10.1016/j.arcontrol.2011.03.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the controllability and stability of control systems that are nonlinear, and for which, for whatever reason, linearization fails. We begin by motivating the need for two seemingly exotic tools: non-smooth control-Lyapunov functions, and discontinuous feedbacks. With the aid of nonsmooth analysis, we build a theory around these tools. We proceed to apply it in various contexts, focusing principally on the design of discontinuous stabilizing feedbacks. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:13 / 33
页数:21
相关论文
共 50 条
  • [1] Explicit Computation of Stabilizing Feedback Control Gains Using Polyhedral Lyapunov Functions
    Briao, Stephanie L.
    Pedrosa, Matheus V. A.
    Castelan, Eugenio B.
    Camponogara, Eduardo
    de Assis, Leonardo S.
    2018 IEEE INTERNATIONAL CONFERENCE ON AUTOMATION/XXIII CONGRESS OF THE CHILEAN ASSOCIATION OF AUTOMATIC CONTROL (ICA-ACCA), 2018,
  • [2] Lyapunov Functions for Continuous and Discontinuous Differentiators
    Cruz-Zavala, Emmanuel
    Moreno, Jaime A.
    IFAC PAPERSONLINE, 2016, 49 (18): : 660 - 665
  • [3] A Universal Feedback Controller for Discontinuous Dynamical Systems Using Nonsmooth Control Lyapunov Functions
    Sadikhov, Teymur
    Haddad, Wassim M.
    JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME, 2015, 137 (04):
  • [4] A Universal Feedback Controller for Discontinuous Dynamical Systems using Nonsmooth Control Lyapunov Functions
    Sadikhov, Teymur
    Haddad, Wassim M.
    Malisoff, Michael
    2014 AMERICAN CONTROL CONFERENCE (ACC), 2014, : 1174 - 1179
  • [5] Lyapunov functions for discontinuous difference inclusions
    Geiselhart, Roman
    IFAC PAPERSONLINE, 2016, 49 (18): : 223 - 228
  • [6] Feedback stabilization and Lyapunov functions
    Clarke, FH
    Ledyaev, YS
    Rifford, L
    Stern, RJ
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 39 (01) : 25 - 48
  • [7] Nonpathological Lyapunov functions and discontinuous Caratheodory systems
    Bacciotti, A
    Ceragioli, F
    AUTOMATICA, 2006, 42 (03) : 453 - 458
  • [8] Smooth Lyapunov Functions for Discontinuous Stable Systems
    Lionel Rosier
    Set-Valued Analysis, 1999, 7 : 375 - 405
  • [9] Smooth Lyapunov functions for discontinuous stable systems
    Rosier, L
    SET-VALUED ANALYSIS, 1999, 7 (04): : 375 - 405
  • [10] Lyapunov-Based Avoidance Controllers With Stabilizing Feedback
    Ballaben, Riccardo
    Braun, Philipp
    Zaccarian, Luca
    IEEE CONTROL SYSTEMS LETTERS, 2024, 8 : 862 - 867