Big mapping class groups and rigidity of the simple circle

被引:8
|
作者
CALEGARI, D. A. N. N. Y. [1 ]
CHEN, L. V. Z. H. O. U. [1 ]
机构
[1] Univ Chicago, Dept Math, Chicago, IL 60637 USA
基金
美国国家科学基金会;
关键词
group actions; low-dimensional dynamics; big mapping class groups; rigidity; GRAPHS;
D O I
10.1017/etds.2020.43
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Gamma denote the mapping class group of the plane minus a Cantor set. We show that every action of Gamma on the circle is either trivial or semiconjugate to a unique minimal action on the so-called simple circle.
引用
收藏
页码:1961 / 1987
页数:27
相关论文
共 50 条
  • [41] Trees and mapping class groups
    Kent, Richard P.
    Leininger, Christopher J.
    Schleimer, Saul
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 637 : 1 - 21
  • [42] A presentation of the mapping class groups
    Luo, F
    MATHEMATICAL RESEARCH LETTERS, 1997, 4 (05) : 735 - 739
  • [43] Superrigidity and mapping class groups
    Farb, B
    Masur, H
    TOPOLOGY, 1998, 37 (06) : 1169 - 1176
  • [44] Simple length rigidity for Kleinian surface groups and applications
    Bridgeman, Martin
    Canary, Richard D.
    COMMENTARII MATHEMATICI HELVETICI, 2017, 92 (04) : 715 - 750
  • [45] SIMPLE GROUPS OF CLASS 2
    GILMAN, R
    GORENSTE.D
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1973, 20 (01): : A94 - A94
  • [46] Surface groups inside mapping class groups
    Gonzalez-Diez, G
    Harvey, WJ
    TOPOLOGY, 1999, 38 (01) : 57 - 69
  • [47] THE GIRTH OF CONVERGENCE GROUPS AND MAPPING CLASS GROUPS
    Yamagata, Saeko
    OSAKA JOURNAL OF MATHEMATICS, 2011, 48 (01) : 233 - 249
  • [48] Generalized braid groups and mapping class groups
    Labruere, C
    JOURNAL OF KNOT THEORY AND ITS RAMIFICATIONS, 1997, 6 (05) : 715 - 726
  • [49] From braid groups to mapping class groups
    Chen, Lei
    Mukherjea, Aru
    MATHEMATISCHE ZEITSCHRIFT, 2023, 303 (02)
  • [50] From braid groups to mapping class groups
    Lei Chen
    Aru Mukherjea
    Mathematische Zeitschrift, 2023, 303