Maximizing the smallest eigenvalue of a symmetric matrix: A submodular optimization approach

被引:15
|
作者
Clark, Andrew [1 ]
Hou, Qiqiang [1 ]
Bushnell, Linda [2 ]
Poovendran, Radha [2 ]
机构
[1] Worcester Polytech Inst, Dept Elect & Comp Engn, 100 Inst Rd, Worcester, MA 01609 USA
[2] Univ Washington Seattle, Dept Elect Engn, 185 E Stevens Way NE, Seattle, WA 98195 USA
关键词
Eigenvalues; Optimization; Distributed control; Networked control; Submodularity; Networks; Matrix algebra; MULTIAGENT SYSTEMS; LEADER SELECTION; CONTROLLABILITY;
D O I
10.1016/j.automatica.2018.06.016
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper studies the problem of selecting a submatrix of a positive definite matrix in order to achieve a desired bound on the smallest eigenvalue of the submatrix. Maximizing this smallest eigenvalue has applications to selecting input nodes in order to guarantee consensus of networks with negative edges as well as maximizing the convergence rate of distributed systems. We develop a submodular optimization approach to maximizing the smallest eigenvalue by first proving that positivity of the eigenvalues of a submatrix can be characterized using the probability distribution of the quadratic form induced by the submatrix. We then exploit that connection to prove that positive-definiteness of a submatrix can be expressed as a constraint on a submodular function. We prove that our approach results in polynomial time algorithms with provable bounds on the size of the submatrix. We also present generalizations to non-symmetric matrices, alternative sufficient conditions for the smallest eigenvalue to exceed a desired bound that are valid for Laplacian matrices, and a numerical evaluation. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:446 / 454
页数:9
相关论文
共 50 条