Multiresolution using principal component analysis

被引:0
|
作者
Brennan, V [1 ]
Principe, J [1 ]
机构
[1] Univ Florida, Dept Elect Engn, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes Principal Component Analysis (PCA) to find adaptive bases for multiresolution. An input image is decomposed into components (compressed images) which are uncorrelated and have maximum l(2) energy. With only minor modification, a simple layer linear network using the Generalized Hebbian Algorithm (GHA) is used for multiresolution PCA. The decomposition has been successfully applied to face classification [3]. Good results with biological signals have also been reported [1].
引用
收藏
页码:3474 / 3477
页数:4
相关论文
共 50 条
  • [31] Principal component analysis
    Michael Greenacre
    Patrick J. F. Groenen
    Trevor Hastie
    Alfonso Iodice D’Enza
    Angelos Markos
    Elena Tuzhilina
    Nature Reviews Methods Primers, 2
  • [32] Analysis of Japanese Health using Fuzzy Principal Component Analysis
    Yabuuchi, Yoshiyuki
    Kawaura, Takayuki
    INNOVATION IN MEDICINE AND HEALTHCARE 2015, 2016, 45 : 127 - 138
  • [33] Analysis of an European union election using principal component analysis
    Paulo C. Rodrigues
    Ana T. Lima
    Statistical Papers, 2009, 50 : 895 - 904
  • [34] Principal component analysis
    Wallen, Hayley
    NATURE REVIEWS METHODS PRIMERS, 2022, 2 (01):
  • [35] Principal component analysis
    Bro, Rasmus
    Smilde, Age K.
    ANALYTICAL METHODS, 2014, 6 (09) : 2812 - 2831
  • [36] Technique analysis in elite athletes using principal component analysis
    Gloersen, Oyvind
    Myklebust, Havard
    Hallen, Jostein
    Federolf, Peter
    JOURNAL OF SPORTS SCIENCES, 2018, 36 (02) : 229 - 237
  • [37] Analysis of an European union election using principal component analysis
    Rodrigues, Paulo C.
    Lima, Ana T.
    STATISTICAL PAPERS, 2009, 50 (04) : 895 - 904
  • [38] Principal component analysis
    Jake Lever
    Martin Krzywinski
    Naomi Altman
    Nature Methods, 2017, 14 : 641 - 642
  • [39] Principal component analysis
    Abdi, Herve
    Williams, Lynne J.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2010, 2 (04): : 433 - 459
  • [40] Principal component analysis
    School of Behavioral and Brain Sciences, University of Texas at Dallas, MS: GR4.1, Richardson, TX 75080-3021, United States
    不详
    Wiley Interdiscip. Rev. Comput. Stat., 4 (433-459):