Multiresolution using principal component analysis

被引:0
|
作者
Brennan, V [1 ]
Principe, J [1 ]
机构
[1] Univ Florida, Dept Elect Engn, Computat NeuroEngn Lab, Gainesville, FL 32611 USA
关键词
D O I
暂无
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
This paper proposes Principal Component Analysis (PCA) to find adaptive bases for multiresolution. An input image is decomposed into components (compressed images) which are uncorrelated and have maximum l(2) energy. With only minor modification, a simple layer linear network using the Generalized Hebbian Algorithm (GHA) is used for multiresolution PCA. The decomposition has been successfully applied to face classification [3]. Good results with biological signals have also been reported [1].
引用
收藏
页码:3474 / 3477
页数:4
相关论文
共 50 条
  • [1] Image Denoising Using Multiresolution Principal Component Analysis
    Malini, S.
    Moni, R. S.
    2015 GLOBAL CONFERENCE ON COMMUNICATION TECHNOLOGIES (GCCT), 2015, : 4 - 7
  • [2] Face classification using a Multiresolution Principal Component Analysis
    Brennan, V
    Principe, J
    NEURAL NETWORKS FOR SIGNAL PROCESSING VIII, 1998, : 506 - 515
  • [3] PRINCIPAL COMPONENT FILTER BANKS FOR OPTIMAL MULTIRESOLUTION ANALYSIS
    TSATSANIS, MK
    GIANNAKIS, GB
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1995, 43 (08) : 1766 - 1777
  • [4] Exploration of Principal Component Analysis: Deriving Principal Component Analysis Visually Using Spectra
    Beattie, J. Renwick
    Esmonde-White, Francis W. L.
    APPLIED SPECTROSCOPY, 2021, 75 (04) : 361 - 375
  • [5] Data Analysis Using Principal Component Analysis
    Sehgal, Shrub
    Singh, Harpreet
    Agarwal, Mohit
    Bhasker, V.
    Shantanu
    2014 INTERNATIONAL CONFERENCE ON MEDICAL IMAGING, M-HEALTH & EMERGING COMMUNICATION SYSTEMS (MEDCOM), 2015, : 45 - 48
  • [6] Estimation of Sq variation by means of multiresolution and principal component analyses
    Maslova, I.
    Kokoszka, P.
    Sojka, J.
    Zhu, L.
    JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2010, 72 (7-8) : 625 - 632
  • [7] Feature Extraction of Hyperspectral Image Using Principal Component Analysis and Folded-Principal Component Analysis
    Deepa, P.
    Thilagavathi, K.
    2015 2ND INTERNATIONAL CONFERENCE ON ELECTRONICS AND COMMUNICATION SYSTEMS (ICECS), 2015, : 656 - 660
  • [8] Texture analysis of images using Principal Component Analysis
    Bharati, MH
    MacGregor, JF
    PROCESS IMAGING FOR AUTOMATIC CONTROL, 2001, 4188 : 27 - 37
  • [9] Principal component analysis using QR decomposition
    Sharma, Alok
    Paliwal, Kuldip K.
    Imoto, Seiya
    Miyano, Satoru
    INTERNATIONAL JOURNAL OF MACHINE LEARNING AND CYBERNETICS, 2013, 4 (06) : 679 - 683
  • [10] Sensor validation using principal component analysis
    Kerschen, G
    De Boe, P
    Golinval, JC
    Worden, K
    SMART MATERIALS & STRUCTURES, 2005, 14 (01): : 36 - 42