Dimensionality Reduction of Mass Spectrometry Imaging Data using Autoencoders

被引:0
|
作者
Thomas, Spencer A. [1 ]
Race, Alan M. [1 ]
Steven, Rory T. [1 ]
Gilmore, Ian S. [1 ]
Bunch, Josephine [1 ,2 ]
机构
[1] Natl Phys Lab, Natl Ctr Excellence Mass Spectrometry Imaging NiC, Hampton Rd, Teddington TW11 0LW, Middx, England
[2] Univ Nottingham, Sch Pharm, Univ Pk, Nottingham, England
关键词
MULTIVARIATE-ANALYSIS; ANALYSIS STRATEGIES; SECTIONS; CANCER; MS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The use of mass spectrometry imaging (MSI) techniques has become a powerful tool in the fields of biology, pharmacology and healthcare. Next generation experimental techniques are able to generate 100s of gigabytes of data from a single image acquisition and thus require advanced algorithms in order to analyse these data. At present, analytical work-flows begin with pre-processing of the data to reduce its size. However, the pre-processed data is also high in dimensionality and requires reduction techniques in order to analyse the data. At present, mostly linear dimensionality reduction techniques are used for hyper-spectral data. Here we successfully apply an autoencoder to MSI data with over 165,000 pixels and more than 7,000 spectral channels reducing it into a few core features. Our unsupervised method provides the MSI community with an effective non-linear dimensionality reduction technique which includes the mapping to and from the reduced dimensional space. This method has added benefits over methods such as PCA by removing the need to select meaningful features from the entire list of components, reducing subjectivity and significant human interaction from the analysis.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] A public repository for mass spectrometry imaging data
    Andreas Römpp
    Rui Wang
    Juan Pablo Albar
    Andrea Urbani
    Henning Hermjakob
    Bernhard Spengler
    Juan Antonio Vizcaíno
    [J]. Analytical and Bioanalytical Chemistry, 2015, 407 : 2027 - 2033
  • [42] New software for imaging mass spectrometry data
    Matsuura, Masaaki
    Ushijima, Masaru
    Yuba-Kubo, Akiko
    Wakui, Masatoshi
    Ohmura, Mitsuyo
    Hosaka, Kurando
    Hayasaka, Takahiro
    Masaki, Noritaka
    Miyata, Satoshi
    Yao, Ikuko
    Setou, Mitsutoshi
    Ogawa, Kiyoshi
    Kajihara, Shigeki
    [J]. CANCER RESEARCH, 2012, 72
  • [43] Perspectives in imaging using mass spectrometry
    Dill, Allison L.
    Eberlin, Livia S.
    Ifa, Demian R.
    Cooks, R. Graham
    [J]. CHEMICAL COMMUNICATIONS, 2011, 47 (10) : 2741 - 2746
  • [44] Hyperspectral Visualization of Mass Spectrometry Imaging Data
    Fonville, Judith M.
    Carter, Claire L.
    Pizarro, Luis
    Steven, Rory T.
    Palmer, Andrew D.
    Griffiths, Rian L.
    Lalor, Patricia F.
    Lindon, John C.
    Nicholson, Jeremy K.
    Holmes, Elaine
    Bunch, Josephine
    [J]. ANALYTICAL CHEMISTRY, 2013, 85 (03) : 1415 - 1423
  • [45] Spatiochemical Characterization of the Pancreas Using Mass Spectrometry Imaging and Topological Data Analysis
    Derwae, Helena
    Nijs, Melanie
    Geysels, Axel
    Waelkens, Etienne
    De Moor, Bart
    [J]. ANALYTICAL CHEMISTRY, 2023, 95 (28) : 10550 - 10556
  • [46] Peak learning of mass spectrometry imaging data using artificial neural networks
    Walid M. Abdelmoula
    Begona Gimenez-Cassina Lopez
    Elizabeth C. Randall
    Tina Kapur
    Jann N. Sarkaria
    Forest M. White
    Jeffrey N. Agar
    William M. Wells
    Nathalie Y. R. Agar
    [J]. Nature Communications, 12
  • [47] Peak learning of mass spectrometry imaging data using artificial neural networks
    Abdelmoula, Walid M.
    Lopez, Begona Gimenez-Cassina
    Randall, Elizabeth C.
    Kapur, Tina
    Sarkaria, Jann N.
    White, Forest M.
    Agar, Jeffrey N.
    Wells, William M.
    Agar, Nathalie Y. R.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [48] Data parsing in mass spectrometry imaging using R Studio and Cardinal: A tutorial
    Shedlock, Cameron J.
    Stumpo, Katherine A.
    [J]. JOURNAL OF MASS SPECTROMETRY AND ADVANCES IN THE CLINICAL LAB, 2022, 23 : 58 - 70
  • [49] Data Imputation and Dimensionality Reduction Using Deep Learning in Industrial Data
    Zhou, Zhihong
    Mo, Jiao
    Shi, Yijie
    [J]. PROCEEDINGS OF 2017 3RD IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND COMMUNICATIONS (ICCC), 2017, : 2329 - 2333
  • [50] Dimensionality reduction of unsupervised data
    Dash, M
    Liu, H
    Yao, L
    [J]. NINTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1997, : 532 - 539